
USAARL Report No. 99-20

A Software Tool for the Design of
Multifunction Displays

Gregory Francis

Purdue University

Aircrew Health and Performance Division

September 1999

Approved for public rebase; distribution unknited.

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577

Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC),
Cameron Station, Alexandria, Virginia 223 14. Orders will be expedited if placed through the
librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on
automatic mailing lists should confii correct address when corresponding about laboratory
reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should
not be construed as an official Department of the Army position, policy, or decision, unless so
designated by other official documentation. Citation of trade names in this report does not
constitute an official Department of the Army endorsement or approval of the use of such
commercial items.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

w I

REPORT DOCUMENTATION PAGE I Form Approved
OMB No. 0704-0188

I

la. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
Unclassified

I I

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release, distribution

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

USAARL Report No. 99-20
5. MONITORING ORGANIZATION REPORT NUMBER(S)

I I

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

U.S. Army Aeromedical (If applicable) U.S. Army Medical Research and Materiel
Research Laboratory MCMR-UAS Command

I I

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P.O. Box 620577 Fort Detrick
Fort Rucker, AL 36362-0577 Frederick, MD 21702-5012

I I

8a. NAME OF FUNDING I SPONSORING I 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

I
I

I I

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
I

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

62787A 30162787A879 PB DA336445
I

11. TITLE (Include Security Classification)

A software tool for the design of multifunction displays. (U)

I

12. PERSONAL AUTHOR(S)

I

13a. TYPE OF REPORT
Final

I

16. SUPPLEMENTAL NOTATION

.

13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

I

I .

1 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identiv by block number)

FIELD GROUP 1 SUB-GROUP cockpit design, hierarchy, multifunction displays,
I workload

.

19. ABSTRACT (Continue on reverse if necessary and identiw by block number)
This document describes MFDTool, a software aid for the design of multifunction displays
(MFDs) . MFDTool applies an optimization algorithm to designer-specified constraints
thereby creating the best layout of MFD information for MFD hardware. The guide specifies
the types of MFD situations where MFDTool applies and describes the steps needed to define
constraints and start the optimization approach. A sample MFD design problem (involving
an automated teller machine) is discussed. Appendices include both source code to the
software and a user's guide to MFDTool.

I

22a. NAME OF RESPONSIBLE INDIVIDUAL

DD Form 1473, JUN 86

I

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

.

22b. TELEPHONE (Include Area Code) 22. OFFICE SYMBOL
(334) 255-6907 MCMR-UAX-SI

Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Table of contents

Introduction ... 1

MFDTool .. 2

Constraint costs .. 3

Weighting costs ... 6

Optimization ... 7

Conclusions ... 9

References ... 10

Appendix A. Java source code ... 12

Appendix B. MFDTool user’s guide .. 36

.
111

Introduction

Previous research (Francis & Reardon, 1997; Francis, 1998) described a computational
method of assigning labels and functions to user selections in a multifunction display (MFD). An
MFD consists of a computer display screen that provides information in response to a user’s
request. Through interaction with an interface (usually button pushes), the user moves through a
hierarchical representation of information. Automated teller machines, medical devices, aircraft
cockpits, electric typewriters, retail registers, fax machines, and many other devices utilize
MFDs, with varying degrees of complexity.

At some point in the design of an MFD, decisions must be made about how to map the
various parts of the information hierarchy to user actions (e.g., button pushes). These decisions
can affect user performance, as demonstrated by Rogers et al. (1996) for automated tellers,
Obradovich and Woods (1996) and Cook and Woods (1996) for medical devices, Cuomo et al.
(1998) for intranet information servers, and Reising and Curry (1987), Dohme (1995), and
Sirevaag et al. (1993) for aircraft flight.

Mapping hierarchy information to MFD buttons is a challenging task. The human-computer
interactions involved in accessing information from an MFD are complicated and not entirely
understood. Moreover, even a small hierarchy database can be mapped to hardware buttons in a
vast number of ways (see Fisher, Yungkurth and Moss (1990) for a discussion of this issue), so
combinatorial explosion quickly precludes an exhaustive search of all possible mappings.
Therefore such mappings are, at best, created by experts who rely on experience and general
guidelines (Calhoun, 1978; Lind, 1981; Spiger and Farrell, 1982; MIL-STD-1472D; Williges,
Williges and Fainter, 1988; Holley and Busbridge, 1995). Francis and Reardon (1997)
summarized many of these guidelines:

1. Frequently used functions should be the most accessible.
2. Time critical functions should be the most accessible.
3. Frequently used and time critical functions should be activated by the buttons that feel “ideally

located” (e.g., top of a column of buttons).
4. Program repeated selection of the same button. For example, locate the most commonly selected

function of a menu on the same button that called up that menu.
5. The number of levels in the hierarchy should be as small as possible.
6. The overall time to reach functions should be minimized.
7. Functions that are used together should be grouped on the same or adjacent pages.
8. Related functions on separate pages should be in a consistent location.
9. Related functions should be listed next to each other when on a single page.
10. Consider the types of errors crew members might make and place functions accordingly to

minimize the effect of those errors.

Many of these guidelines are the same as those applied to the physical layout of controls
(Sanders and McCormick, 1987), while others (4,5,8,9) appear to be unique to the search of an
electronic database. Some of these guidelines have been investigated experimentally. For example,
Snowberry, Parkinson and Sisson (1983) showed that hierarchy search speed and accuracy
increased as the number of levels decreased (5). Likewise, Teitlebaum and Granda (1983)
demonstrated that placing related functions in inconsistent positions resulted in a 73% increase in

search time (8). A literature search found no experimental evidence to support the remaining
guidelines, although many of them seem reasonable.

While many of these guidelines correctly identify the key characteristics of good MFD design
application of these criteria is problematic because they often conflict with each other. For example,
should a frequently used function be placed by itself near the top of the hierarchy (1) or should it be
placed in a submenu with its related, but infrequently used, functions (7)? Likewise, should criteria

(3), (4) or (7) d ominate selection of a button for a specific function? Currently, there is no
quantitative method of measuring the tradeoffs and designers try out different options until the
whole system “feels” good. This is a time consurning task because movement of a single label can
require additional changes throughout the MFD. As a result, MPD design largely remains an artistic
endeavor, depending primarily on the experience, intuition, and hard work of the designer.

Recently, there has been interest in computational methods that can optimize the design of
computer consoles (Roske-Hofstrand and Paap, 1986; Fisher, 1993; Hwa, Marks and Shieber,
1995; Farrell, 1997; Sargent, Kay and Sargent, 1997). The general approach is to gather relevant
data about the human computer interaction, build a quantitative model of that interaction, and
then find a design that provides the best model performance. Our previous research (Francis and
Reardon, 1997; Francis, 1998) demonstrated how to apply this approach to assigning MFD labels
to button presses. While successful, the applications were tailored to the specific task at hand. To
broaden the applicability and use of the approach, we created a software tool that can be used by
MFD designers in more general situations to optimize the association of MFD labels to buttons.

MFDTool

MFDTool is computer software that provides a graphical interface for an MFD designer to
build an MFD hierarchy and associate the hierarchical information with physical buttons on
specified MFD hardware. Through the graphical interface, the designer creates a variety of
constraints on the MFD and the program applies a variation of the algorithms described in
Francis and Reardon (1997) and Francis (1998) to identify the best MFD design that satisfies the
designer-specified constraints.

MFDTool focuses on a subset of the guidelines identified above that can be recast in terms of
an optimization problem. MFDTool requires that the designer has a specified MFD hardware
system that describes the sizes and positions of MFD buttons (the approach can be modified to
other types of interactions, but buttons are a common interface type). MFDTool also requires that
the designer specifies the hierarchical arrangement of information pages in the database. This
arrangement also allows for hyperlinks that move back up the hierarchy (e.g., RETURN) or
function as shortcuts.

Given this information, MPDTool allows the user to identify four types of constraints, which
can be mixed and matched as desired.

l Global movement time: If one ignores shortcuts and backward links, then moving through
the hierarchy from the top to any specified page can be described by a single finite sequence

2

of button presses. When the designer specifies the frequencies of search for different pieces
of MFD information, MFDTool associates page labels with buttons in a way to minimize the
average movement time needed to reach information. This constraint corresponds to
guidelines (l), (6), and often (4), above.

l Pages to close buttons: Often labels on a single screen are related to each other and the
designer wants the related page labels to be grouped together on nearby buttons. At other
times labels on different MFD screens are related and the designer wants those labels to be
associated to the same or nearby buttons (e.g., CANCEL should be in the same place on
every page). MFDTool allows the designer to specify as many of these constraints as desired.
This constraint corresponds to guidelines (8), and (9), above.

l Pages to fixed buttons: Sometimes a designer wants to restrict a single label or multiple
labels (either on the same screen or different screens) to a subset of the possible buttons (e.g.,
always put left engine information on the left side of the MFD screen). MFDTool allows the
designer to specify as many of these constraints as desired. This constraint accommodates
guideline (3) above, but also allows for more general restrictions.

l Path movement time: The use of some MFDs requires users to retrieve certain
combinations of information. If a user has to first check the status of one system, then the
status of a second, and then the status of a third, there will be a path of visited pages that
correspond to this combination of information searches. Moreover, because the system
information may be scattered across the MFD hierarchy, designers often include hyperlinks,
or shortcuts, to the top of the hierarchy or to other MFD hierarchy locations. MFDTool
allows the designer to identify these paths and acts to assign page labels to buttons to
minimize the time required to execute these sequences. MFDTool allows the designer to
specify as many of these paths as desired.

In MFDTool, each constraint has a corresponding numerical cost function that measures how
poorly a constraint is being satisfied by the current MFD design. Larger cost values correspond
to worse designs. An optimization algorithm searches through a variety of MFD designs to find
one that minimizes (or nearly so) the sum of costs. The calculation of costs is described in the
next section. The next section provides a mathematical description of costs.

Constraint costs

There are four types of constraints, as described in the previous section. MFDTool acts to
minimize cost functions associated with these constraints. This section mathematically defines
the cost functions.

Global movement time

In MFDTool, insuring that needed information can be retrieved as quickly as possible
corresponds to placing MFD labels on buttons to minimize the time needed to execute the
movements. For a user new to the use of a particular MFD, the savings of such minimization
may be small, as much of the searching time involves reading labels and identify which buttons
to press. However, for an expert user, most of the search time consists of executing the already
known sequences of button presses. Identifying which button press sequences are fastest and
assigning frequently searched for items to those button press sequences can lead to substantial
reductions in access time.

3

Applying this approach requires a means of predicting how long it will take an expert user to
execute a sequence of button presses. MFDs can be used with a variety of interactions (e.g.,
mouse clicks, finger-pointing, multiple-finger movements, special pointer pens; step cursor
control, hand-on-throttle). Models for different types of interactions are dramatically different.
At the moment, MFDTool supports only finger-pointing movements because there is a well
established model of how long it takes people to move a pointer over a given distance to a target
of a given size. MFDTool uses a form of Fitts’ Law (Fitts, 1954; MacKenzie, 1995) that says
that the movement time, M is:

Here, D is the distance between the starting position of the finger and the target; S is the size of
the target (MFDTool measures this as the minimum of button height and width), log2 is the
logarithm in base 2, and I, is a parameter with units milliseconds/bit. I,,, is empirically measured,
and, for finger movements, values between 70 and 120 ms/bit are common. MFDTool uses
I,=1 00 ms/bit.

When a sequence of movements is to be executed, MFDTool makes the simplifying
assumption that it can add up the M terms for movement from the first button to the second, the
second to the third, and so on. Thus, the total time needed to execute a sequence of button
presses will be

m-l

i=l

where there are m button presses in the sequence, and A&i+] is the time to move between
successive buttons. This is almost surely a lower limit of execution time, as a user may need to
read labels to remember which button to press next. There is no apriori way to know when a
user will memorize the pattern of button presses to retrieve particular information. Such
memorization surely depends on the semantics of the hierarchy and the user’s experience.
MFDTool has no way to model these effects.

Future versions of MFDTool will include support for other types of interactions, including
movement with a mouse, pointer pens, step cursor control, and hand-on-throttle control. A more
difficult task is to model multiple-finger movements (e.g., typing or piano playing), though it
may be possible in certain situations.

Once the interaction model is defined, MFDTool can predict how long it will take to reach a
desired information label by looking at the sequence of button pushes necessary to reach that
page label from the top level of the MFD hierarchy. The cost function for global movement time
is the average time to reach an MFD page label:

4

where n is the number of information labels in the hierarchy, I; is the total time needed to
execute the sequence of button presses to reach page labelj, and pi is the proportion of time that
page labelj is needed by the user. As the assignment of page labels to buttons is modified, the
value of I; changes. MFDTool tries to assign page labels to button presses so that labels with
largerpi values have smaller q values, thereby minimizing search time.

Pages to close buttons

One could imagine a situation where a user is very knowledgeable about searching through an
MFD and has memorized all the button presses to reach every page label. In such a situation, the
best the designer can do is to minimize the total movement time using Cl. However, such
situations are rare. Even experienced users probably use feedback from the MFD screen to guide
their searches for all but the most commonly used page labels. As a result, the designer needs to
provide order among the assignment of labels to buttons that will help guide the user’s search. A
commonly used technique is to place labels that are related to each other on nearby buttons. A
designer may, for example, want to create ordered lists of items on a single MFD screen and may
also want to insure that related labels on different screens are associated with nearby buttons.

In its present version, MFDTool defines “closeness” relative to the time needed to move
between buttons. Thus, if a designer constrains page labels Ll,...,Lk to be as close as possible, and
each label is currently assigned to buttons b(Ll),...,b(Lk), then the quantitative cost of these
assignments is:

G = 2 i +(Li)&j)].
j=i+l

Here M[b(Li), b(LJ] is the time needed to move Ii-om button b(LJ to button b(L,J, as defined
above. The second summation starts at i+l to avoid double summation of time for each button
pair. If the labels in this constraint are all on different pages, then Ct equals zero when every
label is associated with the same button. If some of the labels are on the same screen, C2 has a
nonzero minimum, as two labels cannot simultaneously be associated with the same button on
the same screen. Whichever the case, MFDTool ties to assign information labels to buttons in a
way that minimizes C2.

Pages to fixed buttons

Sometimes a designer may want to constrain some page labels to a particular button or set of
buttons. This could occur for example, if a designer, to stay consistent with other displays, wants
an Ex7T label always placed on the lower left button. Or, a designer may want geographical
topics to have corresponding positions on the MFD screen (e.g., left to left). All of these
constraints can be imposed in MPDTool.

This constraint’s cost measures how close the page labels are to their restricted buttons. As
with the other costs, MFDTool defines “closeness” relative to the time needed to move between
buttons. Thus, if the designer constrains page labels Ll,...,Lk to be restricted to buttons bl,...,bh,

and each label is currently assigned to buttons b(LI),..., b(Lk) then the quantitative cost of these
assignments is:

The term inside the summation compares the currently assigned button for label Li with each of
the allowable buttons and takes the minimum movement time. Thus, if all labels are assigned to
one of the allowable buttons, the minimum movement times are zero and the total cost is zero.
When a constrained label is not assigned to an allowable button, the cost is incremented by the
minimum movement time needed to move from the assigned button to one of the allowable
buttons.

Path movement time

Cl, above, measures the average time required to search for a page label, starting from the top
of the hierarchy and taking the most direct route to that label. However, depending on the MFD,
not all searches are of that type. It is frequently the case that a user needs to gather a number of
different types of information from different screens in the MFD. The designer may include
shortcuts or hyperlinks that allow the user to quickly travel along such paths of pages. Cost Cl
cannot account for these types of situations because the use of shortcuts means that there are
multiple (usually infinitely many) ways to reach a label. For these types of situations, the
designer must specify the sequence, or path, of pages the user goes through to perform a required
task. Once this path is specified, MFDTool acts to minimize movement time along that path by
associating page labels to buttons, much as for cost Cl.

The quantitative definition of cost is much as for Cl, except the designer must identify the
path of page labels that the user steps through (for Cl the computer could do this because each
page label has a unique position in the hierarchy). The designer identifies an ordered sequence of
page labels Ll,..., Lk for which movement time is to be minimized. If each page label is currently
assigned to buttons b(Ll),..., b(L$, then the quantitative cost of these assignments is:

k-l

‘4 = C M[b(‘i), b(Li+*)]*
i=l

MFDTool tries to minimize this cost through the assignment of page labels to buttons.

In some MFD applications, minimization of movement time along these paths may be the
most important job for the designer. By their very nature, such sequences must be specified by
the designer.

Weighting costs

All of the constraint costs are defined in terms of milliseconds of time needed to move
between buttons. However, the designer still needs to identify the relative importance of different
constraints so that MFDTool produces the desired result. It is common for constraints to be in

6

conflict with each other. In anticipation of such conflicts the designer needs to indicate a weight,
2, for each constraint cost. For example, if the designer wants to be certain that the EXPlabel is
always on the lower left button, even if such assignment means an increase in average search
time, then the weight for the EXIT constraint might be set larger than the weight for the average
search time.

MFDTool tries to minimize the weighted sum of constraint costs:

C= &&Ri.
i=l

Here, there are n constraints defined by the user, and Ri corresponds to the cost associated with
constraint i.

There is no way for MFDTool to advise the designer on how to set the weights. The default is
the value one, but it is merely a starting point and not intended as a reasonable choice. The
values of the weights have a great effect on the resulting MFD design, and it is not unusual for a
designer to tweak the weights to insure that one constraint is satisfied over another. The use of
extremely large weights, relative to others, is often not effective because it sometimes hinders the
optimization process (next section).

Optimization

Once a total cost function is defined, one can use any number of algorithms to find the
assignment of page labels to buttons that minimizes that cost function. MFDTool currently uses
the simulated annealing algorithm, but future versions of MFDTool may explore other
approaches.

Simulated annealing is a variation of hill-climbing algorithms. In a hill-climbing (or hill-
descending, only the sign needs to be changed) algorithm, the system is initialized to a particular
state (e.g., mapping of labels to buttons) and the cost is calculated for that state. One of the
variables of the problem (e.g., a label) is randomly selected and modified (e.g., moved to a new
button). A new cost value is calculated, and if the new cost is less than the old cost, the change is
kept, otherwise the change is undone. In this way, the system converges to a state where any
change would lead to an increase in cost (e.g., where any change in the mapping would be
worse). Hill-climbing techniques have a tendency to get stuck in local minima of cost because
they never accept changes that increase cost. In complex problems, hill-climbing methods can
easily get trapped in a state where any change only increases cost but the global minimum is very
different, with a much smaller cost. What is needed is a controlled way to climb out of local
minima and end in a state with the global minimum of cost. By analogy, one would probably, at
some point during a hike, need to go down a ravine or a small slope to climb to the top of a
mountain.

Simulated annealing is a stochastic algorithm that at first accepts changes even if they lead to
larger costs. As time progresses, a temperature parameter gradually decreases (this is the
annealing) so that it becomes less likely that a change leading to an increase in cost is accepted.

As the temperature becomes small the algorithm becomes essentially hill-climbing. As long as
the temperature decreases slowly enough and enough changes are considered at each temperature
level, simulated annealing is statistically guaranteed to find the global minimum of a problem. In
practice, though, the necessary temperature schedule is too slow and the number of changes at
each level is too big, so simpler approaches are taken that are faster, but less certain to find the
global minimum.

In simulated annealing, the initial temperature, T, is set large enough that many state changes
are accepted even if they lead to a cost increase. MFDTool sets the initial temperature in the
following way. Given the state of the system at the start of the optimization process, many (50
times the number of page labels) changes are made to the MFD, and the change in cost is
calculated for each change. The average of these cost changes is the initial temperature for the
annealing process. The final state of the system after all these changes is also the initial state for
the start of the annealing process.

Changes are made by randomly selecting an MFD page label. Its button assignment is noted,
and a new button assignment is randomly selected. The selected label swaps positions with
whatever (perhaps nothing) is at the new button assignment. After each change, new cost, C,,,
is calculated and compared to the cost before the change, Cold. The change in cost, AC = Cnav -
Cold, is calculated. If the cost change is negative, the change is kept. If the cost change is positive,
the change is kept when a random number between zero and one is greater than

p = exp(- AC / T)

This relationship means that when AC is much smaller than T,p is close to one, and lots of
changes are kept. As T is gets smaller than AC, p gets closer to zero, and changes are not kept
very often. Statistically then, the system is more likely to be in a state with a low cost. As T
decreases, the system tends to be stuck in a state with very low cost.

To insure that the statistical situation is close to reality, one needs to implement many changes
at every temperature level. MFDTool makes 300 times the number of page labels changes at
every temperature level. After these changes, the temperature is modified by the equation

r,, = 0.99T,,

The process is then repeated for the new temperature. The whole process stops when it seems
that the temperature is so small that the system is trapped in a particular state (as in hill-
climbing). MFDTool reaches this conclusion when 10 changes in temperature have not produced
any changes in cost.

At the end of the simulated annealing process, the system should be in a state with a low (but
perhaps not optimal) cost. Being certain of finding the true optimal state with the absolute lowest
possible cost would be prohibitively difficult and would likely require a supercomputer, even for
relatively small MJ?Ds.

8

MFDTool is written in the Java programming language. Source code is provided in
Appendix A of this document. A full description of MPDTool, and the procedures to use it, is
provided in the MFDTool User’s Guide, which is attached as Appendix B of this document.

Conclusions

Previous work showed that the computational approach described in Francis and Reardon
(1977) and further developed in Francis (1998) had operational benefit. However, the
programming skills needed to implement the algorithms from scratch are difficult to come by.
MPDTool provides a means whereby experts in MPD design, but not necessarily experts in
optimization and computer programming, can use the computational algorithms to guide their
design process. We anticipate that MFDTool will prove valuable to many MFD designers in a
variety of different contexts.

References

Calhoun, G. 1978. Control logic design criteria for multifunction switching devices. In:
Proceedings of the Human Factors Societv 22nd Annual Meeting: 383-387.

Cook, R. and Woods, D. 1996. Adapting to new technology in the operating room. Human
Factors. 38: 593-613.

Cuomo, D. L., Borghesani, L., Khan, K. and Violett, D. 1998. Navigating the company web.
Ergonomics in Design, 6,7-14.

Department of Defense. 198 1. Militarv standard: Human eneineering design criteria for military
svstems. eauinment. and facilities. MIL-STD-1472D.

Dohme, J. 1995. The military quest for flight training effectiveness. Vertical Flight Traininrr.
W. Larsen, R. Randle, and L. Popish (Eds.) NASA Reference Publication 1373.

Farrell, P. 1997. A human-machine interaction analysis using layered protocol theory.
Proceedings of the 29th Annual Conference of HFAC/ACE, Winnipeg, Manitoba, 39-41.

Fisher, D. L. 1993. Optimal performance engineering: Good, better, best. Human Factors, 35,
115-139.

Fisher, D., Yungkurth, E., and Moss. S. 1990. Optimal menu hierarchy design: Syntax and
semantics. Human Factors. 32: 665-683.

Fitts, P. M. 1954. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Exnerimental Psvcholog;v. 47: 381-391.

Francis, G. 1998. Designinn optimal hierarchies for information retrieval with multifunction
dismays Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report
No. 98-33.

Francis, G. and Reardon, M. 1997. Aircraft multifunction displav and control svstems: A new
auantitative human factors design method for ornanizing. functions and disnlav contents Fort
Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 97- 18.

Holley, C. and Busbridge, M. 1995. Evolution of the Venom variant of the AH-l W
Supercockpit. Proceedings of the American Heliconter Societv 5 1 st Annual Forum. 1436-
1449.

Hwa, R., Marks, J. and Shieber, S. 1995. Automatic structuring of embedded hypermedia
documents. TR-95-6. Mitsubishi Electric Research Laboratorv.

10

Lind, J. 1981. Evaluation of cockpit procedures, displays, and controls for stores management
in the advanced aircraft armament systems (AAAS).. Naval Weapons Center Technical
Memorandum 4538.

MacKenzie, I. S. 1995. Movement time prediction in human-computer interfaces. In Readings
in human-computer interactions (2”d ed.). R. M. Baecker, W. A. S. Buxton, J. Grudin, & S.
Greenberg (Eds.). Kaufinann: Los Altos, CA.

Obradovich, J. H. and Woods, D. D. 1996. Users as designers: How people cope with poor HCI
design in computer-based medical devices. Human Factors. 38: 574-592.

Reising, J., and Curry, D. 1987. A comparison of voice and multifunction controls: Logic
design is the key. Ergonomics. 30: 1063-1077.

Rogers, W., Cabrera, E., Walker, N., Gilbert, K., and Fisk, A. 1996. A survey of automatic teller
machine usage across the adult life span. Human Factors. 38: 156-166.

Roske-Hofstrand, R. and Paap, K. 1986. Cognitive networks as a guide to menu organization.
Ergonomics. 29 1301-1311.

Sargent, T. A., Kay, M. G., and Sargent, R. G. 1997. A methodology for optimally designing
console panels for use by a single operator. Human Factors, 39,389-409.

Sanders, M. and McCormick, E. 1987. Human Factors in Engineering and Design. New York,
NY: McGraw-Hill Book Co.

Sirevaag, E., Kramer, A., Wickens, C., Reisweber, M., Strayer, D., and Grenell, J. 1993.
Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics.
36: 1121-l 140.

Snowberry, K., Parkinson, S. R., and Sisson, N. 1983. Computer display menus. Ergonomics
26(7), 699-712.

Spiger, R. and Farrell, R. 1982. Survey of multifunction display and control technology.
NASA-CR-167510..

Tietlebaum, R. and Granda, R. 1983. The effects of positional constancy on searching menus
for information. In: Proceedinps of Human Factors in Comnuting Svstems. New York, NY:
Association for Computing Machinery.

Williges, R., Williges, B., and Fainter, R. 1988. Software interfaces for aviation systems. In
Human Factors in Aviation. E. Wiener and D. Nagel (Eds.). Academic Press: San Diego.

Amendix A.

Java source code.

This appendix provides the source code of each Java class.
._

Clos~abJeF~ame
. .._ . i I. .

_

import java.awt.*;
import java.awt.event.‘;
import java.io.Serializable;

P class CloseableFrame.class

This object provides a window that, when the dose window command is given, hides the window.

Written by Greg Francis, Purdue University
August 1999

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
*I

public class CloseableFrame extends Frame implements WrndowListener, Serializable
(

public CloseableFrame(String title)
(

setSize(200,200);
setTitle(title);
addWtndowListener(this);

I

// close the window when requested
public void windowClosing(WindowEvent e)

{
this.dispose();

)

// the remaining methods must be defined, but do not do anything
public void windowClosed(WindowEvent e)

(1
public void windowlconified(WindowEvent e)

0
public void windowOpened(WindowEvent e)

0
public void windowDeiconified(WindowEvent e)

0
public void windowActivated(WindowEvent e)

0
public void windowDeactivated(WindowEvent e)

0

public static void main(String argsn)
{ Frame f = new CloseableFrame(“Closeable frame”);
f.show();

)
?-pii; I. -_._ _.

“._” _. ._ _

/* class MFDPage.class

This object holds information about an MFD page. Written by Greg Francis, Purdue University, August 1999 for US Army Aeromedical
Research Laboratory, Ft. Rucker, Alabama

12

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
*/

import java.util.Vector;
import java.io.Serializable;

public class MFDPage implements Serializable

public static final int TERMINATOR=O, PARENT=I, HYPERLINK=Z; // type of page
String Name;
Vector Siblings= new Vector();
MFDPage Parent; // has to be assigned after initial creation
int TypeOfPage;
MFDPage HyperLink = null;
int ButtonAssignment;
double Proportion;
boolean fixedProportion;

// Parent
public MFDPage(String Name,int typeOfPage, Vector Siblings)

{
this.Name = Name;
thisparent = Parent;
this.TypeOtPage = typeOfPage;
if(TypeOfPage = PARENT)

thisSiblings = Siblings;
>

// Terminator
public MFDPage(String Name, int typeOfPage)

I
thisName = Name;
this.Parent = Paren$
this.TypeOfPage = typeOfPage;

// Hyperlink
public MFDPage(String Name, int typeOtPage, MFDPage hyperlink)

thisName = Name;
this.Parent = Parent;
this.TypeOfPage = typeOfPage;
if(TypeOfPage = HYPERLMK)

this.HyperLink = hyperlink;
1

MFQButton _. ,.

/* class MFDButton.class

This object provides a button with a designer-specified size and location. All physical measurements are in inches.

Written by Greg Francis, Purdue University
August 1999

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
‘I

import java.awt.Button;
import java.io.Serializable;

13

public class MFDButton extends Button implements Serializable
{

Button button;
float xSize, ySize; Ii sizes are in inches
float xPosition, yPosition;

public MFDButton(String Name, float xSize, float ySize, float Xposition, float yPosition)
{

this.button = new Button(Name);
this.xSize = xSize;
this.ySize = ySize;
this.xPosition = Xposition;
this.yPosition = yPosition;

1
1

,^ _ ._. “,_ ,,t., . . . I ,.
MFDOptimize _

- .‘”

__. _ _ _.

/* class MFDOptimize.claas

This object applies the optimization algorithms to a provided MFD system.

Written by Greg Francis, Purdue University
August 1999

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be constnred as an official Department of the Army position, or decision,
unless so designated by other documentation.

*I

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.Vector;
import java.util.StringTokenizer;
import java.util.Randorq
import java.io.Seriahzable;

public class MFDOptimize implements Serializable
(

private String k&Dir = ““;

MFD mfd;
Vector Pages;
MFDPage currentPage;
int MovementU[]; N pair-wise movement time

public MFDOptimize(MFD mfd)
(

thismfd = mfd;
this.Pages = rnfd.mfdhierarchy.Pages;

Movement = new int [mfd.mfdfYame.Buttons.size~][mfd.mfdframe.Buttons.size()];
ComputcTimcToMove(mfd.rnfdf?ame.Buttons, Movement);
mfd.upDate.setText(“Done computing movement times.“);

/I Do optimization
Optimize(Pages,Movement, mfd.rnfdframe.Buttons);

}
public void keyTyped(KeyEvent evt) { }
public void keyReleased(KeyEvent evt) { }
public void keyPressed(KeyEvent evt) { }

,.- .

public void ComputeTimeToMove(Vector buttons, int [][] Movement)
(.

int bsize = buttons.size();

14

//Find all movement times with Fitts’ law
for(int i=O;i<bsize;i*)
{

MFDButton fir& = (MFDButton)buttons.elementAt(i):
// middle of first button

~ I.

double xl = tirstB.xPosition + firstB.xSize/2.0;
double yl = tirstB.yPosition + tirstB.ySize/2.0;
for(int j=O$bsize~++)

MFDButton secondB = (MFDButton)buttons.elementAt@;
//middle of second button
double x2 = secondB.xPosition + secondB.xSize/2.0;
double y2 = secondB.yPosition + secondB.ySize/2.0;

// calculate Euclidean distance
double distance = Math.sqrt(Math.pow(xl-x2,2.0) + Math.pow(yl-y2,2.0));

//Calculate movement time with b=lOO mshits for finger movement (Mackenzie et al, 1991)
Movement[i]fi] = (int)(lOO * Math.log(2*distance/Math.min(secondB.xSize, secondB.ySize) + 1 .O)/Math.log(Z.O));

public void Optimize(Vector Pages, int [][I Movement, Vector buttons)

Random randGen = new Random();
double CurrentCost = Cost(mfd.Constraints, Movement);
int bSize = buttons.size();
boolean doGptimize=tme;
int numTempChanges = 0;
float Temperature = (floaQO.0;

mfd.upDate.setText(“Initalizing...”);
N initialize to a random state and find initial temperature as average of changes
int pageSize = Pages.size();
for(int swapNum=O;swapNum<SOCpageSize;swapNum++)
l

//pick a random Page that is a parent
int tempbtdex = (int)Math.abs(randGen.nextInt0)%@ageSize);
MFDPage parent = (MFDPage)Pages.elementAt(templndex);
while(!@arent.TypeOfPage=MFDPage.PARENT)]I parent.Siblings.size()==O)
{

temphrdex = (int)Math.abs(randGen.nextInt())%(pageSize);
parent = (MFDPage)Pages.elementAt(tempIndex);

]
int SibSize = parent.Siblings.size();

// Randomly pick a sibling and a new location
int sibIndex = (int)Math.abs(randGen.nextIntO)%(SibSize);
MFDPage sib1 = (MFDPage)parent.Siblings.elementAt(sibIndex1);

int newPosition = (int)Math.abs(randGen.nextInt())%(bSize);
while(sib1 .ButtonAssigmnent==newPosition)

newposition = (int)Math.abs(randGen.nextInt())%@Size);

//check whether there is a page at position to swap into
boolean swapToEmpty=true;
MFDPage sib2=null;
for(int i=O;i<SibSize;i*)
t

sib2= (MFDPage)pamnt.Siblings.elementit(i);
if(sib2.ButtonAssignmen~ewPosition)
{

swapToEmpty=false;
i=SibSize;

1
1

int swapFrom= -1;
if(swapToEmpty)

15

1
swapFrom = sib1 .ButtonAssignment;
sib1 .ButtonAssignment = newPosition;

1
else

int temporary = sib1 .ButtonAssignment;
sib1 .ButtonAssignment = sib2.ButtonAssignment;
sib2.ButtonAssignment = temporary;

//check new cost, keep swap regardless (randomizing state)
double NewCost = Cost(mfd.Constraints, Movement);
double ChangeCost = NewCost - CurrentCost;

N for computing intial temperature later
if(NewCost > CurrentCost)
I

Temperature+= ChangeCost;
numTempChanges++;

// set initial temprature
Temperature /= numTempChanges;

int stepsSinceChangedCos+O; //to note when system seems to have converged

while(doGptimize)
{

double startCost = CurrentCost;
Temperature*= 0.99;
for(int swapNurrd);swapNum<3OO*pageSize;swapNum++)
{

N pick a random Page that is a parent
int templndex = (int)Math.abs(randGen.nextInt())%@ageSize);
MFDPage parent = (MFDPage)Pages.elementAt(tempIndex);
while(!@atent.TypeOtPage=MFDPage.PARENT) 11 parent.Siblings.size()==O)
t

tempIndex = (int)Math.abs(randGen.nextInt())%@ageSize);
parent = (MFDPage)Pages.elementAt(tempIndex);

1
int SibSize = parent.Siblings.size();

N Randomly pick a sibling and a new location
int St&Index1 = (int)Math.abs(randGen.nextInt())%(SibSize);
MFDPage sib1 = (MFDPage)parent.Siblings.ekmentAt(sibIndex1);

int newPosition = (int)Math.abs(randGen.nextInt())%@Size);
while(sib1 .Buttotissignment==newPosition)

newPosition = (int)Math.abs(randGen.nextInt())%@Size);

// check whether there is a page at position to swap into
boolean swapToEmpty=tme;
MFDPage sib2=null;
for(int i=O;i<SibSize;i++)
(

s1b2= (MFDPage)parent.Siblings.elemen~t(i);
if(sib2.ButtonAssigmnent==newPosition)
{

swapToEmpty=false;
i=SibSize;

int swapFrom= -1;
if(swapToEmpty)

swapFrom = sib1 .ButtonAssignment;
sib1 .ButtonAssignment = newPosition;

16

int temporary = sib1 .ButtonAssignment;
sibl.ButtonAssignment = sib2.ButtonAssignment;
sib2.ButtonAssignment = temporary;

1

//check new cost and decide whether to keep change
double NewCost = Cost(mfd.Constraints, Movement);
double ChangeCost = Math.max(NewCost - CurrentCost,O.O);
double probswaptemp = Math.exp(-ChangeCost(double)Temperature);
double prob = randGen.nextDouble();

if(ChangeCosV0 && probSwaptemp < prob) // if true, swap back
(

if(swapToEmpty)
sib1 .ButtonAssignment = swapFrom;

else
(

int temporary = sib1 .ButtonAssignment;
sib1 .ButtonAssignment = sib2.ButtonAssignment;
sib2.ButtonAssignment = temporary;

j
]
else !I keep swap

CurrentCost = NewCost;

if(startCost=CurrentCost) // no change after full run at this temperature
stepsSinceChangedCost++;

else
startCost = culTentCoss

mfd.upDate.setText(“Cost=“+CurrentCost+”. Temp=“+Temperature+” Cost unchanged for “+stepsSinceChangedCost+”
temperature levels”);

if(stepsSinceChangedCost=lO) N stop search, system has probably converged
doOptimize=false;

1
mfd.upDate.setText(“Final cost = “+CurrentCost);

1

public double Cost(Vector Constraints, int [I[] Movement)
{

double cost=O.O;
int constraintSize= Constraints.size();
for(int i=O;iCconstraintSize;i-H)
{

MFDConstraint currentConstraint = (MFDConstraint)Constraints.elementAt(i);
cost += currentConstraint.Cost(Movement);

1
retum(cost);

1

public static void main(String[] args)

MFD f = new MFD(“MFD”);
f.setVisible@ue);

MJ?TKonstr#nt

/* class MFDConstraint.class

This object contains information and methods for dealing with MFD constraints.

Written by Greg Francis, Purdue University
August 1999

17

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
*I

import java.util.Vector;
import java.io.Serializable;

public class MFDConstraint implements Serializable
(

public static final int MOVEMENTTIME=O, PATHMOVEMENTTIME=l, RELATEDNEARBY=2, RESTRICTEDPLACES=3;
String Name;
Vector Pages= new Vector@
int [J Places = new int[11;
int TypeOfConstraint;
double Weight;

// Not restricted places
public MFDConstraint(String Name, Vector applicablePages, int TypeOfConsnaint, double Weight)
I

this.Name = Name;
this.TypeOfConstraint = TypeOfConstraint;
this.Pages = applicablePages;
thisweight = Weight;

N Restricted places requires Vector of places
public MFDConstraint(String Name, Vector applicablePages, int TypeOfConstraint, double Weight, int [] Places)
t

thisName = Name;
this.TypeOfConstraint = TypeOfConstraint;
this.Pages = applicablePages;
this.Weight = Weight;
if(TypeOfConstraint=RESTRICTEDPLACES)

this.Places = Places;

// Method for calculating constraint cost
public double Cost(int [][I Movement)
l

double cost = 0.0;
int pageSize= Pages.size();

switch(TypeOfConstraint)
1

case MOVEMENTTIME:
for(int i=O;i<pageSize;i++)
t

MFDPage currentPage = (MFDPage)Pages.elementAt(i);
int TimeForPath=O;

// go backwards through path
while(!currentPage.equals(currentPage.Parent))

TimeForPath += Movement[currentPage.ParentButtonAssignmt][currentPage.BunonAssignment];

currentPage = currentPage.Parent;

currentPage = (MFDPage)Pages.elementAt(i);
cost += currentPage.Proportion * TimeForPath;

1
break;

case PATHMOVEMENTTIME:
for(int i=O;iCpageSize-1 ;i-+t)

MFDPage page1 = (MFDPage)Pages.elementAt(i);
MFDPage page2 = (MFDPage)Pages.elemenentAt(i+l);

18

cost += Movementbagel .ButtonAssignment][page2.ButtonAssignment];

break;

case RELATEDNEARBY:
for(int i+l;i<pageSize;i++)

MFDPage page1 = (MFDPage)Pages.elementAt(i);
for(int j=i+lj<pageSize;j*)

{
MFDPage page2 = (MFDPage)Pages.elementAtCj);
cost += Movement[pagel.ButtonAssignment][page2.ButtonAssignment];

break;

case RESTRICTEDPLACES:
for(int i=O;iCpageSize;i*)

{
MFDPage page1 = (MFDPage)Pages.elementAt(i);
int buttonPlaces = Places.length;
float pageCost = Float.POSITIVE_INFMITY;
for(int j=O;j<buttonPlaces;j*)
{

if(pageCost>Movement[pagel.ButtonAssignment][P1aces~]])

1
pageCost = (float)Movement[pagel .ButtonAssignment][Placesfi]];

1
1
cost+=pageCost;

1
break;

retum(Weight*cost);

lbjFIj&-ame

/* class MFDFrame.class

This object provides a window for the emulation of the physical MFD and its buttons

Written by Greg Francis, Purdue University
August 1999

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
*/

import java.awt.*;
import java.util.Vector;
import java.awt.event.*;
import java.io.Serializable;

public class MFDFrame extends CloseableFrame implements ActionListener, Serializable

I
String Name, Interaction;
float xSize, ySize;
Vector Buttons;
MFD mfd;

public MFDFrame(MFD mfd, String Name, String Interaction, float xSize, float ySize, Vector Buttons)

(.
super(“MFD Hardware: “+Name);

19

thismfd = mfd;
this.Name = Name;
this.Intetaction = Interaction;
this.xSize = xSize;
this.ySize = ySize;
thisButtons = Buttons:

Dimension screensize =Toolkit.getDefaultToolkit().getScreenSize();
float screenResolution = Toolkit.getDefauhToolkit().getScreenResohttion();

this.setLayout(new GridLayout(1 ,I));
Panel panel = new PanelO;
panel.setI_ayout(null);
this.add(panel);

this.setResizable(false);
II Add buttons to frame
for(int i=%i<Buttons.size();i*)

this.show();

public static void main(String[] args)
(

MFD f = new MFD(“MFD”);
f.setVisible(true);

1

public void ShowActivePage(MFDPage currentPage)
{

N clear all the buttons
for(int i=O;i<Buttons.size();ii+)

((MFDButton)Buttons.elementAt(i)).button.setLabe~(” I’);

if(currentPage.TypeOtPage = MFDPage.PARENT)
1

for(int i=O;i~currentPage.Siblings.size();i++)
{

MFDPage tempSib = (MFDPage)currentPage.Sibhngs.elementAt(i);
if(tempSib.TypeOfPage = MFDPage.PARENT)

(~FDBunon)Buttons.elementAt(tempSib.ButtonAssignment)).bu~on.set~bel(~~Sib.Na~” >“);
else

(~FDBu~n)Buttons.elementAt(tempSib.Bu~o~ssi~m~t)).bu~on.set~bel(te~Sib.Name);
1

1
else if(currentPage.TypeOfPage = MFDPage.TERMINATOR)
(

II show parent
ShowActivePage (currentPage.Parent);

}
else if(currentPage.TypeOfage = MFDPage.HYPERLfNK)

if(currentPage.HyperLink-llull) // if hyperlink not defined
ShowActivePage(currentPage.Parent);

else // show hyperlink
ShowActivePage (currentPage.HyperLink);

mpainto;
setVisible(true);

20

public void actionPerformed (ActionEvent event)

I

String arg = event.getActionCommand();

// find which sibling corresponds to the clicked button
// go by name on button
if(mfd.mfdhierarchy.currentPage.TypeOfPage = MFDPage.PARENT)

// if label is for a directory, it has ” >” on the end
int sibSize = mfd.mfdhierarchy.currentPage.Siblings.size();
for(int i=O;i<sibSize;i*)

{
MFDPage sib = (MFDPage) mfd.mfdhierarchy.curntPage.Siblings.elementAt(i);
if(arg.equals(sib.Name) 11 arg.equals(sib.Name+” >‘I))

i=sibSize;
/I update MFD hierarchy
if(sib.TypeOfPage= MFDPage.HYPERLINK)

mfd.mfdhierarchy.currentPage = sib.HyperLink;
else

mfd.mfdhierarchy.currentPage = sib;
mfd.mfdhierarchy.ShowActivePage(mfd.mhierarchy.currentPage);
N update list on MFD
mfd.PageList.select(mfd.mfdhierarchy.Pages.indexOf(mfd.mfdhierchy.currentPage));
mfd.LoadPageProperties(mfdmfdhierarchy.currentPage);

I

else if (mfd.mfdhierarchy.currentPage.TypeOfPage = MFDPage.TERMINATOR /I mfd.mfdhierarchy.currentPage.TypeOtPage =
MFDPageHYPERLMK)

(
int sibSize = mfd.mfdhierarchy.curntPage.Parent.Siblings.size();
for(int i=O;i<sibSize;i++)

{
MFDPage sib = (MFDPage) mfd.mfdhierarchy.curn~age.Parent.Siblings.elementAt(i);
if(arg.equals(sib.Name) 11 arg.equals(sib.Name+” >‘I))

1
i=sibSize;
// update MFD hierarchy
if(sib.TypeOfPage= MFDPage.HYPERLINK)

mfd.mfdhierarchy.currentPage = sib.HyperLink;
else

mfdmfdhierarchy.curentPage = sib;
mfd.mfdhierarchy.ShowActivePage(sib);
I/ update list on MFD
mfd.PageList.select(mfd.mfdhierarchy.Pages.indexOf(mfd.mfdhierarchy.currentPage));
mfd.LoadPageProperties(mfd.mfdhierarchy.currentPage);

I

mHierarchy

/* class MFDHierarchy.class

This object provides a window that, displays the hierarchical arrangement of MFD information.

Written by Greg Francis, Purdue University
August 1999

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
+I

21

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.Vector;
import java.util.StringTokenizer,
import java.io.Serializable;

public class MFDHierarchy extends CloseableFrame
implements ItemListener, ActionListener, Serializable

I
private String IastDir = ““;
MFD mfd;
Vector Pages;
MFDPage currentPage;
hit activepage;
List PageList = new List();
Button showParent;
Label PathSummary;

public MFDHierarchy(MFD mfd, Vector Pages)
{

super(“Hierarchy: “+mfd.Name);
thismfd = mfd;
this.Pages = Pages;

setI_ayout(new BorderLayout);
Panel HierarchyPanel = new Panelo;
this.add(HierarchyPanel);

setBackground(Color.white);
this.setSize(300.300);

PageList = new List();
HierarchyPanel.setLayout(new BorderLayout(5,5));
HierarchyPanel.add(“Center”,PageList);
PageList.addItemListener(this);

PathSummary = new Label(” “);
HierarchyPanel.add(“South”,PathSummaiy);

showParent = new Button(“Show parent ofpage”);
HierarchyPanel.add(“North”,showParent);
showParent.addActionListener(this);

II top page
currentPage= (MFDPage)Pages.elementAt(O);
for(int i=l$Pages.size();i*)
{

if(currentPage.equals(currentPage.Parent))
i=Pages.sizeO;

else
currentPage = (MFDPage)Pages.elementAt(i);

ShowActivePage(currentPage);

public void ShowActivePage(MFDPage currentPage)
{

//put currentPage labels on far right column
PageListclearO;
if(currentPage.TypeOfPage = MFDPage.PARENT)
c

for(int i=O;i~urrentPage.Siblings.size0;icc)
(

MFDPage tempSib = (MFDPage)currentPage.Siblings.elementAt(i);
if(tempSib.TypeOtPage = MFDPage.PARENT)

PageList.addItem(tempSib.Name+” 2”);
else

22

PageList.addItem(tempSib.Name);

1
]
else if(currentPage.TypeOfPage = MFDPage.TERMINATOR)

{
li show parent
ShowActivePage (currentPage.Parent);
// set currentPage as selected
PageList.select(currentPage.Parent.Siblings.indexOf(cu~~tPage));

else if(currentPage.TypeOfPage = MFDPage.HYPERLINK)

i
II show parent
ShowActivePage (currentPage.Parent);
// set currentPage as selected
PageList.select(currentPage.Parent.Siblings.indexOf(cu~~ffage));
// set currentPage as selected
PageList.select(currentPage.Parent.Siblings.indexOf(cu~~~age));

;/ define path
MFDPage tempPage = currentPage;
String pathname = “/“+currentPage.Name;
while(!tempPage.equaIs(tempPage.Parent))

tempPage = tempPage.Parent;
pathname = “/“+tempPage.Name+pathname;

PathSummary.setText@athname);
repaint();
mfd.mfdframe.ShowActivePage(currentPage);
setVisible(true);

public static void main(Seing[] args)

MFD f = new MFD(“MFD”);
f.setVisible(true);

public void itemStateChanged(ItemEvent event)

int selected = PageList.getSelectedIndex();
if(selected!= -1)

if(currentPage.TypeOfPage=MFDPage.PARENT)

{
MFDPage sibPage = (MFDPage)currentPage.Siblings.elementAt(selected);
currentPage = sibPage;

1
else if(currentPage.TypeOfPage=MFDPage.TERMINATOR)

1
MFDPage sibPage = (MFDPage)currentPage.Parent.Siblings.elementAt(selected);
currentPage = sibPage;

]
else if (currentPage.TypeOfPage=MFDPage.HYPERLINK)

MFDPage sibPage = (MFDPage)currentPage.ParentSiblings.elementAt(selected);
currentPage = sibPage;
if(!(currentPage.HyperLink=nuh)) N if hyperlink is defined

if(currentPage.HyperLink.TypeOtPage = MFDPage.TERMINATOR)
currentPage = currentPage.HyperLink.Parent;

else
currentPage = currentPage.HyperLink;

ShowActivePage(currentPage);

23

. // update list on MFD
mfd.PageList.select(Pages.indexOf(currentPage));
mfd.LoadPageProperties(currentPage);

public void actionPerformed (ActionEvent event)
i

String arg = event.getActionCommand();
if (arg.equals(“Show parent of page”))
1

if(currentPage.TypeOfPage=MFDPage.PARENT)
currentPage = currentPage.Parent;

else if(currentPage.TypeOfPage=MFDPage.TERMINATOR)
currentPage = currentPage.ParentParent;

else if(currentPage.TypeOfPage=MFDPage.HYPERLINK)
currentPage = curmntPage.Parent.Parent;

ShowActivePage(curtPage);
// update list on MFD
mfd.PageList.select(ages.indexOf(currentPage));

1

/* class MFD.chiss

This object provides a window and user interface to open, save, and define new MFDs. It also provides an interface for defining consn-aints
and starting the optimization.

Written by Greg Francis, Purdue University
August 1999

For US Army Aeromedical Research Laboratory, Ft. Rucker, Alabama

The views opinions, and/or findings contained in this report are those of the author
and should not be construed as an official Department of the Army position, or decision,
unless so designated by other documentation.
*/

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.Vector;
import java.util.StringTokenizer;
import java.io.Serializable;

public class MFD extends CloseableFrame
implements ActionListener, ItemListener, Serializable

{
private String IastDir = ““;
MFDFrame mfdfi-ame;
MFDHieramhy mfdhierarchy;
Vector Constraints = new Vector();
List PageList;
Label upDate;
String Name;

TextField changeProportion;
Checkbox [] checkFixed= new Checkbox[Z]; // fixed proportion or not

TextField weight, constName;
List showConstraints, showButtons, constminedPagesList;
Choice constraintChoice;
Button saveConstraint, newConstraint, addPageConst, deletePageConst, editConstraint, deleteConstraint;
Vector ConstrainedPages = new Vector@
MFDConstmint currentConstraint;
Button setHyperhnk;
Label editLabel, nameHyperlink;
boolean LookingForHyperlinklse;

24

MFDPage editingpage;

public MFD(String title)

(
super(title);
setLayout(new BorderLayout());
MenuBar mbar = new MenuBar();
Menu mmfd = new Menu(“File”);
MenuItem mlmfd = new MenuItem(“Open”);
mlmfd.addActionListener(this);
mmfd.add(mlmfd);
MenuItem m2mfd = new MenuItem(“Save”);
m2mfdaddActionListener(this);
mmfdadd(m2mfd);
mbar.add(mmfd);
MenuItem m3mfd = new MenuItem(“New”);
m3mfdaddActionListener(this);
mmfd.add(m3mfd);
mbar.add(mmfd);

setMenuBar(mbar);

this.setLayout(new BorderLayout(S,S));
PageList = new List();
PageList.addItemListener(this);
this.add(“West”,PageList);

Panel top = new Panelo;
top.setI_ayout(new BorderLayout(S

Panel editProportion = new Panelo;
editProportion.setLayout(new GridLayout(2,lJZ));
editLabel = new Label(“Edit proportion of time user targets this page: ‘I);
editProportion.add(editLabel);
changeProportion = new TextField(” I’);
editProportion.add(changeProportion);

Panel hyperlink = new Panelo;
hyperlink.setLayout(new GridLayout(l,2,2,2));
setHyperlink = new Button(“Change hyperhnk”);
nameHyperlink = new Label(” -1 1,
hyperlink.add(setHyperhnk);
hyperlink.add(nameHyerlink);
setHyperlink.addActionListener(this);
setHyperlink.disable();

top.add(“North”, editProportion);
top.add(“Center”, hyperlink);
Button saveChanges = new Button(“Save changes to page”);
top.add(“South”, savechanges);
saveChanges.addActionListener(this);

CheckboxGroup CbG= new CheckboxGroup();
checkFixed[l] = new Checkbox(“Fixed”, CbG, false);
checkFixed[O] = new Checkbox(“Free”, CbCi, true);

Panel cbgPane1 = new Panelo;
cbgPanel.setLayout(new GridLayout(3,l));
cbgPanel.add(new Label(“Restriction on proportion”));
cbgPanel.add(checkFixed[O]);
cbgPanel.add(checkFixed[l]);

top.add(“East”, cbgPane1);
this.add(“North”,top);

// Set up layout for constraints
Panel Optimize = new Panelo;
Gptimize.setLayout(new BorderLayout(5J));

Panel ListConst = new Panelo;

25

ListConst.setLayout(new BorderLayout(
showConstraints = new List();
ListConst.add(“North”, new Label(“Select constraint”));
ListConst.add(“Center”,showConstraints);
editConstraint = new Button(“Edit constraint”);
deleteConstraint = new Button(“Delete constraint”);
Panel editDeleteC = new Pane@;
editDeleteC.setLayout(new GridLayout(l,2));
editDeleteC.add(deleteConstraint);
editDeleteC.add(editConstraint);
ListConst.add(“South”, editDeleteC);
editConstraintaddActionListener(this);
deleteConstraint.addActionListener(this);

Panel ButtonsPanel = new Panelo;
ButtonsPanel.setl_ayout(new BorderLayout@;
ButtonsPanel.add(“North”,new Label(“Select buttons”));
showButtons = new List();
showButtons.set.h4ultipleSelections(true);
ButtonsPanel.add(“Center”,showButtons);

Panel IefIConst = new Panelo;
lefIConst.setLayout(new GridLayout(2,1,5,10));
leftConst.add(ListConst);
lefKonst.add(ButtonsPanel);

Gptimize.add(“West”,leftConst);

Panel constp = new Panelo;
constP.setLayout(new BorderLayout(
constP.add(“North”~ew Label(“Add a new constraint”));
constraintChoice = new Choice();
constraintChoice.addItem(“Global movement time”);
constraintChoice.addItem(“Path movement time”);
constraintChoice.additem(“Pages to close buttons”);
constraintChoice.addItem(“Pages to fixed buttons”);
constP.add(“Center”,constraintChoice);
Panel newSave = new PanelO;
newSave.setLayout(new GridLayout(2,1,0,2));
newConstraint = new Button(“New constraint”);
SaveConstraint = new Button(“Save constraint”);
newSave.add(newCons@aint);
newSave.add(saveConstraint);
constP.add(“South”,newSave);
newConstraint.addActionListener(this);
saveConstraint.addActionListener(this);
newConstraint.disable();
saveConstraint.disable();

Panel pageP = new PanelO;
pageP.setLayout(new BorderLayout(
pageP.add(“North”, new Label(“Constrained pages”));
constrainedPagesList = new List();
pageP.add(“Center”, constrainedPagesList);
addPageConst = new Button(“Add MFD page”);
deletePageConst = new Button(“Remove selected page”);
Panel pagePane = new Panel@
pagePanel.setLayout(new GridLayout(l2));
pagePanel.add(deletePageConst);
pagePanel.add(addPageConst);
pageP.add(“South”, pagepanel);
addPageConst.addActionListener(this);
deletePageConst.addActionListener(this);
addPageConst.disable();
deletePageConst.disable();

Panel constT = new PanelO;
constT.setLayout(new GridLayout(2,2));
constT.add(new LabelC’Weight”));
weight = new TextField(” “);

26

constT.add(weight);
constT.add(new Label(“Name”));
constName = new TextField(” ‘I);
constT.add(constName);

Panel rightPanel = new PanelO;
rightPanel.setLayout(new GtidLayout(3,l ,S,lO));
rightPanel.add(constP);
rightPanel.add(pageP);
rightPanel.add(constT);

Optimize.add(“Rast”,rightPanel);

Panel bottom = new Panelo;
bottom.setLayout(new BorderLayout(
upDate = new Label(“Load a hierarchy”);
Button startOpt = new Button(“Start optimization”);
bottom.add(“Center”,upDate);
bottom.add(“East”, startOpt);
startOptaddActionListener(this);
this.add(“South”,bottom);
this.add(“East”,Optimize);

this.setBackground(Color.white);
this.pack();
this.setVisible(true);

public void ReadInMFDData(String directory, String fileName)

String path = directoty+“/“+tileName;
BufferedReader readIn = new BufferedReader(new FileReader@ath));

/I Get name of MFD
String s = readIn.readLine();
StringTokenizer t = new StringTokenizer(s,“&“);
String Name = t.nextToken();
this.Name = Name;
this.setTitle(“MFD: “+Name);

//Get type of MFD interaction
s = readInreadLine0;
t = new StringTokenizer(s,“&“);
String Interaction = t.nextToken();

// Get size of MFD in inches
s = readIn.readLine();
t = new StringTokenizer(s,” “);
float MFDxSize = Float.valueOf(t.nextToken()).floatValue();
float MFDySize = Float.valueOf(t.nextToken())tIoatValue();

If Get buttons
s = readIn.readLine(); // skips line indicating buttons
int count=O;
Vector Buttons = new Vector();
s=readIn.readLine();
while(!s.equals(“&&“))

{
N add to listing of buttons for constraints
showButtons.addItem(“b”+Buttons.size@;

t= new StringTokenizer(s,” “);
float BxSize = Float.valueOf(t.nextToken()).floatValue();
float BySize = Float.valueOf(t.nextToken()).floatValue();
float BxPlace = Float.valueOf(t.nextToken()).floatValue();
float ByPlace = Float.valueOf(t.nextToken()).floatValue();
Buttons.addElement(new MFDButton(““+count,BxSize,BySize,BxPlace,ByPlace));
count++;

27

s==readIn.readLine();

N all done!
if(mfdframe!=null)

mfdframe.dispose();
mfdframe = new MFDF~me(this,Name,Interaction,MFDxSize~FDyS~e,Bu~ons);
ReadInHierarchyData(directory);

I
catch(Exception e)
{

System.out.println(“Error: “+e.toString());
1

public void ReadInHierarchyData(Stting cwd)
{

Vector Pages = new Vector@
File currentDir = new File(cwd);
if (currentDir.isDirectory())
{

N read in tile names
Sbing[] labels;
FilenameFilter filter = new IgnoreLoadFiles(“hdw”, “mfd”);
labels = currentDir.list(tilter); // read in all files, except .hdw and mfd tiles
N should be only one directory here, the top directory for the hierarchy
for(int i=O;i<(int)Math.min(labels.length, mfdf?ame.Buttons.size());i++)
1

File labelFile =new File(currentDir+File.separatot+labels[i]);
MFDPage top = LoadLabelsForPage(labelFile, Pages);
top.Parent = top;

1
1
N Set up parent for each page
for(int i==O;i<Pages.size();it)
{

MFDPage currentPage = (MFDPage)Pages.elementAt(i);
II find parent for this page
for(int j=O;j<Pages.size()j++)

MFDPage checkPage = (MFDPage)Pages.elementAt(j);
// see if currentPage is a sibling of this page
if(checkPage.Siblings.contains(currentPage))
(

currentPage.Parent = checkPage;
j=Pages.size();

1
//set default probability as a uniform distribution
checkPage.Proportion = 1 .O/Pages.size();

1
mfdhierarchy = new MFDHierarchy(this,Pages);

// List Pages unordered
for(int i=O$Pages.size();i++)
{

MFDPage temp = (MFDPage)Pages.elementAt(i);
String Name=temp.Name:
if(temp.TypeOfPage=MFDPage.PARENT)

Name = Name+” >“.
else if(temp.TypeOfPage==MFDPage.HYPERLINK)
(

Name = Name+” -<‘I;
upDate.setText(“Some hyperlinks are not resolved.“);

]
PageList.addItem(Nam&’ p=“+(float)temp.Proportion);

]
this.pack();
newConstraint.enable();
setVisible(true);

28

public MFDPage LoadI_abelsForPage(File currentDir, Vector Pages)

i
MFDPage retumPage=null;

if(currentDir.isDirectory()) // parent

i
//read in file names
String[] labels;
FilenameFilter filter = new IgnoreLoadFiles(“hdw”, “mfd”);
labels = currentDir.list(tilter); //read in all tiles, except .hdw and mfd tiles from top
//create siblings for this page
Vector siblings = new Vector();
for(int i=O$(int)Math.min(Iabels.length, mfdframe.Buttons.size());i++)

File labelFile = new File(currentDir+File.separator+labels[i]);
MFDPage sibPage = LoadI_abelsForPage(labelFile, Pages);
sibPage.ButtonAssignment = i;
siblings.addElement(sibPage);

1

/I Create page
returnpage = new MFDPage(currentDir.getName(), MFDPage.PARENT, siblings);

1
else //terminator (or hyperlink)
I

//read first line from file to see if it is a hyperlink

try

BufferedReader readIn = new BufferedReader(new FileReader(currentDir));
/I Get type of page
String s = readIn.readLine();
if(s.equals(“HYPERLINK”))

returnPage = new MFDPage(currentDir.getName(), MFDPage.HYPERLINK);

else
returnpage = new MFDPage(currentDir.getName(), MFDPage.TERMINATOR);

catch(Exception e)

System.out.println(“Error: “+e.toString());

1
Pages.addElement(retumPage);

)
catch(Exception e)

System.out.println(“Error: “+e.toString());

1
retum(retumPage);

public static void main(String[] args)

1
MFD f = new MFD(“MFD”);
f.setVisible(true);

public void LoadPageProperties(MFDPage page)

// Load up cell properties
if(!LookingForHyperlink)
(

editingpage = page;
changeProportion.setText(““+page.Proportion);
checkFixed[l].setState(page.fixedProportion);
checkFixed[O].setState(!page.tixedProportion);

29

editLabel.setText(“Edit proportion of time user targets this page: “+editingPage.Name);
if(page.TypeOfPage = MFDPageHYPERLINK)
1

setHyperlink.enable();
if(page.HyperLink = null)

nameHyperlink.setText(“No hyperlink set”);
else

nameHyperlink.setText@age.HyperLink.Name);
1
else
{

setHyperlink.disable();
nameHyperlink.setText(“No hyperlink required”);

else

nameHyperlink.setText@age.Name);

public void UpdateProportions()
t

int size = mfdhierarchy.Pages.sizeO;
double fxedSum=O.O, freeSum4.0;
for(int i=O;i<size;i++)
{

MFDPage tempPage = (MFDPage)mfdhierarchy.Pages.elementit(i);
if(tempPage.fixedProportion)

fixedSum += tempPage.Proportion;
else

freeSum += tempPage.Proportion;
1
for(int i=O;i<size;i*)
I

MFDPage tempPage = (MFDPage)mfdhierarchy.Pages.elemenL4t(i);
if(!tempPage.tixedProportion)

tempPage.Proportion = (1 .O-fixedSum)*tempPage.Proportion/freeSum;
String Name=tempPage.Name;
if(tempPage.TypeOfPage=MFDPage.PARENT)

Name = Name+” >“;
else if(tempPage.TypeOtPage=MFDPage.HYPERLINK)
1

Name = Name+” --‘I;
upDate.setText(“Some hyperlinks are not resolved.“);

1
PageList.replaceItem(Name+” p=“+(float)tempPage.Proportion,i);

public void itemStat&hanged(ItemEvent event)
{
int selected = PageList.getSelectedIndexO;

if(selected!= -1)
I

MFDPage temp = (MFDPage)mfdhierarchy.Pages.elementAt(selected);
mfdhierarchy.currentPage = temp;
mfdhierarchy.ShowActivePage(temp);
LoadPageProperties(temp);
upDate.setText(” ‘I);

1

public void actionPerformed (ActionEvent event)
{

String arg = event.getictionCommand();
if (arg.equals(Wew”))
(

FileDialog d = new FileDialogQhis, “Open MFD start”, FileDialog.LOAD);
d.setDirectory(lastDir);

30

1
else if (arg.equals(“Change hyperlink”))
I

LookingForHyperlink = true;
nameHyperlink.setText(“Select a page as the link from this page.“);

else if (arg.equals(“Start optimization”))

MFDOptimize mfdoptimize = new MFDOptimize(this);

else if (arg.equals(‘%ew constraint”)) // organize interface to get correct info
{

currentConstraint = null;
String choice = constraintChoice.getSelectedItem();
saveConstraint.enableO;
weight.setText(“l .O”);
constName.setText(“C”+Constraints.size());
constrainedPagesListclear();
int[] buttonIndex = showButtons.getSelectedIndexes();
for(int i=O;i<buttonIndex.length;i++)

showButtons.deselect(buttonIndex[i]);
if(choice.equals(“Global movement time”))
i

addPageConst.disable();
upDate.setText(“Global constraint, provide weight and (optional) name”);
ConstrainedPages = mfdhierarchy.Pages;

1

upDate.setText(“Enter pages; buttons, weight and (optional) name”);
ConstrainedPages = new VectorO;
addPageConst.enable();
deletePageConst.enable();

else if (arg.equals(“Add MFD page”))
I

~f(!ConstrainedPages.contains(mfdhierarchy.currentPage))

ConstrainedPages.addElement(mfdhierarchy.cutrentPage);
constrainedPagesList.clear();
for(int i=O;i<ConstrainedPages.size()$+)

constrainedPagesList.addItem(((MFDPage)ConstrainedPages.elemcn~t(i)).Name);
upDate.setText(“Page constrained.“);

1
else

upDate.setText(“Page already constrained.“);

else if (arg.equals(“Remove selected page”))
1

int index = constrainedPagesListgetSelectedIndex();
if(index!= -1)

ConstminedPages.removeElementAt(index);
constrainedPagesListclear();
for(int i=O;i<ConstrainedPages.size();i+)

constrainedPagesListaddItem(((MFDPage)ConstrainedPages.elementAt(i)).Name);
upDate.setText(“Page removed from constraint.“);

else
upDate.setText(“Select a page to remove.“);

I
else if (arg.equals(“Save constraint”))
t

saveConstraint.disable();
addPageConst.disable();
deletePageConst.disable();
II get selected buttons
int[] buttonhtdex = showButtons.getSelectedhidexes(J
N get weight

32

double tempweight = (double)noat.valueOf(weight.getText()).floatValue();
// get name
String tempName = constName.getText();
Sting choice = constraintChoice.getSelectedItem();
N only Fixed place needs button info
if(choice.equals(“Pages to fixed buttons”))
{

if(buttonIndex.lengthth>O)
1

MFDConstraint tempconst = new MFDConstraint(tempName, ConstrainedPages,
MFDConstraintRESTRICTEDPLACES, tempweight, buttonIndex);

if(currentConstraint7=null)
{

Constraints.addElement(tempConst);
upDate.setText(“Constraint added”);

&se
{

int ccIndex = Constraints.indexOf(cumzntConstraint);
Cons@aints.setElemenntAt(tempConst,ccIndex);
upDate.setText(“Constraint updated”);

I
else

upDate.setText(“Select buttons”);

klse if (choice.equals(“Global movement time”))
i

tempweight);
MFDConstraint tempconst = new MFDConstraint(tempName, ConstrainedPages, MFDConstraint.MOVEMENTTIME,

if(currentConshain~ull)

Constraints.addElement(tempConst);
upDate.setText(“Constraint added”);

1
else
t

int ccIndex = Constraints.indexOf(currentConstraint);
Constraints.setElemetAt(tempConst,ccIndex);
upDate.setText(“Constraint updated”);

else if (choice.equals(“Path movement time”))
i

MFDConstraint tempconst = new MFDConstraint(tempName, ConstrainedPages, MFDConstraint.PATHMOVEMENTTIME,
tempweight);

if(currentConstraint=null)

Constraint.s.addElement(tempConst);
upDate.setText(“Cons!raint added”);

else
{

int ccIndex = Consbaints.indexOf(currentConstraint);
Constraints.setElemetAt(tempConst,ccIndex);
upDate.setText(“Constraint updated”);

klse if (choice.equals(“Pages to close buttons”))
i

MFDConstraint tempconst = new MFDConstraint(tempName, CdnstrainedPages, MFDConstraintRELATEDNEARBY,
tempweight);

if(currentConstrainhu11)
1

Constraints.addElement(tcmpConst);
upDate.setText(“Constraint added”);

else

int ccIndex = Constraints.indexOf(currentConstraint);

33

Constraints.setElementAt(tempConsfccIndex);
upDate.setText(“Constraint updated”);

1
showCons@aints.ckarO;
for(int i=O;i~Constraints.size();i++)

showConstraints.addItem(((MFDConstraint)Constraints.elementAt(i)).Name);
currentConstraint = null;

1
else if (arg.equals(“Delete constraint”))
i

int index = showConstraints.getSelectedIndex();
if(index!= -1)

Constraints.removeElementAt(index);
showConstraints.clear();
for(int i=O;i<Constraints.size();i*)

showConstraints.addItem(((MFDConstraint)Constraints.elementAt(i)).Name);
upDate.setText(“Constraint deleted”);

else
upDate.setText(“Select a constraint first”);

]
else if (arg.equals(“Edit constraint”))

int index = showConstraints.getSelectedIndex();
if(index!= -1)

currentConstraint = (MFDConstraint) Consuaints.elementAt(index);
weight.setText(““+currentConstraint.Weight);
constName.setText(currentConstraint.Name);
constraintChoice.select(currentConstnt.TypeO~onstraint);
ConstrainedPages = currentConsrraint.Pages;
I/ load up constrained pages
constrainedPagesList.cIear();
for(int i=0;i<ConstrainedPages.size();i++)

constrainedPagesList.addItem(((MFDPage)ConstrainedPages.elementit(i)).Name);

int[] buttonlndex = showButtons.getSelectedIndexes();
for(int i=0;i<buttonIndexkngth;i*)

showButtons.deselect@uttonIndex[i]);

if(currentConstraintTypeOfConstraint = MFDConstraint.RESTRICTEDPLACES)

for(int i=0;i<currentC0nstraintPlaces.length$+)
showButtons.select(currentConstraint.Places[i]);

addPageConst.enableO;
deletePageConst.enable();
saveConstraint.enableO;
upDate.setText(“Constraint opened”);

1
else

upDate.setText(“Select a constraint first”);
)

// File filter to ignore mfd and hdw tiles
class IgnoreLoadFiles implements FilenameFilter
,

private String extensionl, extension2;
public IgnoreLoadFiles(String extensionl, String extension2)
1

this.extensionl = extensionl;
this.extension2 = extension.&

1
public boolean accept(FiIe dir, Suing name)
{

if(!name.endsWith(extensionl) && !name.endsWith(extensiorQ))

34

return true;
else

retum(new File(dir,name)).isDirectory();

35

Atmendix B.

h4FDTool user’s guide.

The user’s guide provides detailed information on how to use MFDTool and discusses an
example of MFD design.

36

MFDTool: A software aid for the design of multifunction displays

User’s Guide

Gregory Francis1
Purdue University

1364 Psychological Sciences Building
West Lafayette, IN 47907

gfrancisQpsych.purdue.edu
http://www.psych.purdue.edu/~gfrancis/home.html

and
U.S. Army Aeromedical Research Laboratory
. Ft. Rucker, AL 36362-0577

August 11, 1999

‘The views, opinions, and/or findings contained in this report are those of the author and should not be
construed as an official Department of the Army position, policy, or decision, unless so designated by other
documentation.

This work was supported by the Army Aeromedical Research Laboratory (Kent Kimball, Ph.D.) under
the auspices of the U.S. Army Research Office Scientific Services Program administered by Battelle (Delivery

Order i98, Contract No. DAAHO4-96-C-0086).
37

Abstract

This document is a guide to MFDTool, a software aid for the design of multifunction dis-
plays (MFDs). MFDTool applies an optimization algorithm to designer-specified constraints
thereby creating the best layout of MFD information for MFD hardware. The guide spec-
ifies the types of MFD situations where MFDTool applies and describes the steps needed
to define constraints and start the optimization.approach. A sample MFD design problem
(involving an automated teller machine) is discussed.

38

Contents

1 Purpose
1.1
1.2
1.3

1.4
1.5

-Some difficulties of MFD design

How MFDTool helps

Constraint costs

1.3.1 Global movement time

1.3.2 Pages to close buttons

1.3.3 Pages to fixed buttons

1.3.4 Path movement time

Weighting costs

Optimization

2 Using MFDTool
2.1
2.2

2.3

2.4
2.5

Running MFDTool

Creating MFD files

2.2.1 MFD hardware

2.2.2 MFD pages

Setting constraints

2.3.1 Global movement time

2.3.2 Pages to close buttons

2.3.3 Pages to fixed buttons

2.3.4 Path movement time

Optimizing

Saving MFDs

3 Conclusions

2
2
3
4
5
6
6
7
8
8

10
10
10
10
14
18
18
22
22
24
25
27

27

39

MF’DTool

1 Purpose

MFDTool is software that helps a MFD designer optimize assignment of MFD information
to MFD hardware commands (e.g., button pushes). To understand how MFDTool can help
in the design process; the following section describes some of the tasks involved in MFD
design.

1.1 Some difficulties of MFD design

Many computer devices for information display involve fixed hardware switches and flexible
software pages. These types of devices are called multifunction displays (MFDs) or multi-
purpose displays. The information in these devices is often arranged hierarchically so that
a user starts at a top level and moves down the hierarchy by selecting appropriate MFD
pages. Often the hardware devices are real or simulated buttons that remain in fixed po-
sitions. Common examples of MFDs include automated teller machines, pagers, aircraft
cockpit display panels, and various medical devices. As the user moves through the hierar-
chy, the MFD screen changes, thereby providing information to the user. The creation of
effective MFDs is a difficult task, and designers must decide how many buttons to include,
the hierarchical arrangement of information, and the mapping of page labels to hardware
(typically buttons). MFDT oo is a computer program that helps in the last of these tasks. 1

Before discussing what MFDTool does, it may be useful to discuss what it does not do.
MFDTool cannot specify MFD hardware. Decisions on MFD hardware are influenced by a
variety of factors, including environmental conditions, cost of devices, previous versions of
the MFD, and other details that may be particular to a MFD’s specific purpose. In general,
there is no method for a priori designing the MFD hardware, although there are a variety of
guidelines. Often times a designer is simply given a standard hardware setup and told to put
the information “in” the device. MFDTool also does not select what types of information
should be included in the MFD. The selection of information in a MFD and its hierarchical
arrangement is a task that largely must be determined by a human designer because it
‘involves identifying what types of information are necessary, and creating labels that are
meaningful for the user and the MFD purpose. No computer or algorithm, currently, can
identify the semantic and organizational relationships between MFD information.

However, at some point in the design of a MFD, decisions must be made about how
to map the various parts of the information hierarchy to user actions (e.g., button pushes).
Mapping hierarchy information to MFD buttons is a challenging task. The human-computer
interactions involved in accessing information from a MFD are complicated and not entirely
understood. Moreover, even a small hierarchy database can be mapped to hardware buttons
in a vast number of ways, so combinatorial explosion quickly precludes an exhaustive search
of all possible mappings. Therefore such mappings are, at best, created by experts who rely
on experience and general guidelines like the following:

1. Frequently used functions should be the most accessible.

2. Time critical functions should be the most accessible.

40

MFDTool

3.

4.

5.

6.

7.

8.

9.

10.

Frequently used and time critical functions should be activated by the buttons that
feel “ideally located” (e.g., top of a column of buttons).

Program repeated selection of the same button.
lections to adjacent buttons.

Failing that, program sequential se-

The number of levels in the hierarchy should be as small as possible.

The overall time to reach functions should be minimized.

Functions that are used together should be grouped on the same or adjacent pages.

Related functions on separate pages should be in a consistent location.

Related functions should be listed next to each other when on a single page.

Consider the types of errors crew members might make and place functions accordingly
to minimize the effect of those errors.

While many of these guidelines correctly identify the key characteristics of good MFD
design, application of these criteria is problematic because they often conflict with each
other. For example, should a frequently used function be placed by itself near the top of the
hierarchy (1) or should it be placed in a submenu with its related, but infrequently used,
functions (7)? Likewise, should criteria (3), (4) or (7) dominate selection of a button for
a specific function. 7 Currently, there is no quantitative method of measuring the tradeoffs
and designers try out different options until the whole system “feels” good. This is a time
consuming task because movement of a single function can require other changes throughout
the MFD. As a result, hierarchy creation largely remains an artistic endeavor, depending
primarily on the experience, intuition, and hard work of the designer.

The best artists use good tools to help them in their craft. MFDTool handles part of the
complexity of measuring the impact of various guidelines. MFDTool cannot build a MFD
-from scratch, and the design will still depend on the experience and effort of the designer.
MFDTool does allow the designer to consider a larger range of possibilities by automating
part of the design process, thereby freeing the designer to focus on other tasks.

1.2 How MFDTool helps

MFDTool focuses on a subset of the guidelines identified above that can be recast in terms of
an optimization problem. MFDTool requires that the designer has a specified MFD hardware
system that describes the sizes and positions of MFD buttons (the approach can be modified
to other types of interactions, but buttons are a common interface type). MFDTool also
requires that the designer specifies the hierarchical arrangement of information pages in the
database. This arrangement also allows for hyperlinks that move back up the hierarchy (e.g.,
RETURN) or function as shortcuts, as described below.

Given this information, MFDTool allows the user to identify four types of constraints,
which can be mixed and matched as desired.

41

MFDTool

1. Global movement time: If one ignores shortcuts and backward links, then moving
through the hierarchy from top to bottom can be described by a single finite sequence
of button presses. When the designer specifies the frequencies of search for different
pieces of MFD information, MFDTool associates page labels with buttons in a way
to minimize the average movement time needed to reach information. This constraint
corresponds to guidelines (l), (6)) and often (4)) above.

2. Pages to close buttons: Often labels on a single screen are related to each other and
the designer wants the related page labels to be grouped together on nearby buttons.
At other times labels on different MFD screens are related and the designer wants
those labels to be associated to the same or nearby buttons (e.g., CANCEL should be
in the same place on every page). MFDTool allows the designer to specify as many
of these constraints as desired. This constraint corresponds to guidelines (8), and (9),
above.

3. Pages to fixed buttons: Sometimes a designer wants to restrict a single label or
multiple labels (either on the same screen or different screens) to a subset of the
possible buttons (e.g., always put left engine information on the left side of the MFD
screen). MFDTool allows the designer to specify as many of these constraints as desired.
This constraint accommodates guideline (3) above, but also allows for more general
restrictions. ,’

4. Path movement time: The use of some MFDs requires users to retrieve certain
combinations of information. If a user has to first check the status of one system, then
the status of a second, and then the status of a third, there will be a path of visited
pages that correspond to this combination of information searches. Moreover, because
the system information may be scattered across the MFD hierarchy, designers often
include hyperlinks, or shortcuts, to the top of the hierarchy or to other MFD hierarchy
locations. MFDTool allows the designer to identify these paths and acts to assign page
labels to buttons to minimize the time required to execute these sequences. MFDTool
allows the designer to specify as many of these paths as desired.

In MFDTool, each constraint has a corresponding numerical cost function that measures
how poorly a constraint is being satisfied by the current MFD design. Larger cost values
correspond to worse designs. An optimization algorithm searches through a variety of MFD
designs to find one that minimizes (or nearly so) the sum of costs. The calculation of costs is
described in the next section. The next section is fairly complex, involving a mathematical
description of costs, and it can be skimmed by beginners who want to learn how to use the
methods of MFDTool, but are not yet interested in the underlying principles.

1.3 Constraint costs

There are four types of constraints, as described in the previous section. MFDTool acts
to minimize cost functions associated with these constraints. This section mathematically
defines the cost functions.

42

ME’DTool

1.3.1 Global movement time

In MFDTool, insuring that needed information can be retrieved as quickly as possible cor-
responds to placing MFD labels on buttons that minimize the time needed to execute the
movements. For a user new to the use of a particular MFD, the savings of such minimiza-
tion may be small, as much of the searching time involves reading labels and identify which
buttons to press. However, for an expert user, most of the search time consists of executing
the already known sequences of button presses. Identifying which button press sequences
are fastest and assigning frequently searched for items to those button press sequences can
lead to substantial reductions in access time.

-4pplying this approach requires a means of predicting how long it will take an expert user
to execute a sequence of button presses. MFDs can be used with a variety of interactions
(e.g., mouse clicks, finger-pointing, multiple-finger movements, special pointer pens, step
cursor control, hand-on-throttle). Models for different types of interactions are dramatically
different. At the moment, MFDTool supports only finger-pointing movements because there
is a well established model of how long it takes people to move a pointer over a given distance
to a target of a given size. MFDTool uses a form of Fitts’ Law that says that the movement
time, M is:

Here, D is the distance between the starting position of the finger and the target; S is the
size of the target (MFDTool meaSures this as the minimum of button height and width),
log, is the logarithm in base 2, and 1;, is a parameter with units milliseconds/bit. I, is
empirically measured, and, for finger movements, values between 70 and 120 ms/bit are
common. MFDTool uses I, = 100 ms/bit.

When a sequence of movements is to be executed, MFDTool makes the simplifying as-
sumption that it can add up the &J terms for movement from the first button to the second,
the second to the third, and so on. Thus, the total time needed to execute a sequence of
button presses will be:

m-l

T = c M,i+l, (2)
i=l

where there are m button presses in the sequence, and 1Mi,i+l is the time to move between
successive buttons. This is almost surely a lower limit of execution time, as a user may need
to read labels to remember which button to press next. There is no a priori way to know when
a user will memorize the pattern of button presses to retrieve particular information. Such
memorization surely depends on the semantics of the hierarchy and the user’s experience.
MFDTool has no way to model these effects.

Future versions of MFDTool will include support for other types of interactions, including
movement with a mouse, pointer pens, step cursor control, and hand-on-throttle control. A
more difficult task is to model multiple-finger movements (e.g., typing or piano playing),
though it may be possible in certain situations.

Once the interaction model is defined, MFDTool can predict how long it will take to
reach a desired information label by looking at the sequence of button pushes necessary to

43

reach that page label from the top level of the MFD hierarchy. The cost function for global
movement time is the average time to reach a MFD page label:

Cl = 2 TjPj,
j=l

where n is the number of information labels in the hierarchy, Tj is the total time needed
to execute the sequence of button presses to reach page label j, and pj is the proportion of
time that page label j is needed by the user. As the assignment of page labels to buttons is
modified, the value of Tj changes. MFDTool tries to assign page labels to button presses so
that labels with larger pj values have smaller Tj values, thereby minimizing search time.

1.3.2 Pages to close buttons

One could imagine a situation where a user is very knowledgeable about searching through
a MFD and has memorized all. the button presses to reach every page label. In such a
situation, the best the designer can do is to minimize the total movement time using Cl.
However, such situations are rare. Even experienced users probably use feedback from the
MFD to guide their searches for all but the most commonly used page labels. As a result,
the designer needs to provide order among the assignment of labels to buttons that will help
guide the user’s search. A commonly used techhique is to place labels that are related to
each other on nearby buttons. A designer may, for example, want to create ordered lists of
items on a single MFD screen and may also want to insure that related labels on different
screens are associated with nearby buttons.

In its present version, MFDTool defines “closeness” relative to the time needed to move
between buttons. Thus, if a designer constrains page labels L1, Lk to be as close as
possible, and each label is currently &signed to buttons ‘b(L,), b(Lk), then the quantitative
cost of these assignments is:

c2 = 5 5 M[b(Li>,b(Lj)]. (4)
i=l j=i+l

Here M[b(Li, b(Lj)] is the time needed to move from button b(Li) to button b(Lj) 7 as in
equation (1). The second summation starts at i + 1 to avoid double summation of time for
each button pair. If the labels in this constraint are all on different pages, then Cz equals
zero when every label is associated with the same button. If some of the labels are on the
same screen, C’s has a nonzero minimum, as two labels cannot simultaneously be associated
with the same button on the same screen. Whichever the case, MFDTool tries to assign
information labels to buttons in a way that minimizes Cz.

1.3.3 Pages to fixed buttons

Sometimes a designer may want to constrain some page labels to a particular button or
set of buttons. This could occur for example, if a designer, to stay consistent with other
displays, wants an EXIT label always placed on the lower left button. Or, a designer may

44

MFDTool

want geographical topics to have corresponding positions on the MFD screen (e.g., left to
left). All of these constraints can be imposed in MFDTool.

This constraint cost measures how close the page labels are to their restricted buttons.
As with the other costs, MFDTool defines “closeness” relative to the time needed to move
between buttons. Thus, if the designer constrains page labels Li, ..,, Lk to be restricted to
buttons bi, bh, and each label is currently assigned to buttons b(Li), b(L,), then the
quantitative cost of these assignments is:

C’s = 2 ,min M[bj,b(Li)].
izl 3=l,...,h (5)

The term inside the summation compares the currently assigned button for label Li with
each of the allowable buttons and takes the minimum movement time. Thus, if all labels
are assigned to one of the allowable buttons, the minimum movement times are zero and the
total cost is zero. When a constrained label is not assigned to an allowable button, the cost
is incremented by the minimum
to one of the allowable buttons.

movement time needed to move from the assigned button

1.3.4 Path movement time

Cl, above, measures the average time required to search for a page label, starting from the
top of the hierarchy and taking the most direct route to that label. However, depending
on the MFD, not all searches are of that type. It is frequently the case that a user needs
to gather a number of different types of information from different screens in the MFD.
The designer may include shortcuts or hyperlinks that allow the user to quickly travel along
such paths of pages. Cost Ci cannot account for these types of situations because the use
of shortcuts means that there are multiple (usually infinitely many) ways to reach a label.
For these types of situations, the designer must specify the sequence, or path, of pages the
user goes through to perform a required task. Once this path is specified, MFDTool acts to
-minimize movement time along that path by associating page labels to buttons, much as for
cost cr.

The quantitative definition of cost is much as for Ci, except the designer must identify
the path of page labels that the user steps through (for Ci the computer could do this
because each page label has a unique position in the hierarchy). The designer identifies an
ordered sequence of page labels Lr , Lk for which movement time is to be minimized. If
each page label is currently assigned to buttons b(L,), b(Lk), then the quantitative cost
of these assignments is:

k-l

(74 = c MPG), Wi+l)l. (6)
i=l

MFDTool tries to minimize this cost through the assignment of page labels to buttons.
In some MFD applications, minimization of movement time along these paths may be the

most important job for the designer. By their very nature, such sequences must be specified
by the designer.

45

1.4 Weighting costs

All of the constraint costs are defined in terms of milliseconds of time needed to move between
buttons. However, the designer still needs to identify the relative importance of different
constraints so that MFDTool produces the desired result. It is common for constraints to be
in conflict with each other. In anticipation of such conflicts the designer needs to indicate
a weight, X, for each constraint cost. For example, if the designer wants to be certain that
the EXIT label is always on the lower left button, even if such assignment means an increase
in average search time, then the weight for the EXIT constraint might be set larger than the
weight for the average search time.

MFDTool tries to minimize the weighted sum of constraint costs:

C=&&.
i=l

Here, there are n constraints defined by the user, and & corresponds to the cost associated
with constraint i.

There is no way for MFDTool to advise the designer on how to set the weights. The
default is the value one, but it is merely a starting point and not intended as a reasonable
choice. The values of the weights have a great effect on the resulting MFD design, and it is
not unusual for a designer to tweak the weights to insure that one constraint is satisfied over
another. The use of extremely large weights, relative to others, is often not effective because
it sometimes hinders the optimization process (next section). In general, the designer should
set the weight on a constraint just high enough to insure that the constraint is satisfied.
This often involves trial and error.

1.5 Optimization

Once a total cost function is defined, one can use any number of algorithms to find the
_assignment of page labels to buttons that minimizes that cost function. MFDTool currently
uses the simulated annealing algorithm, but future versions of MFDTool may explore other
approaches.

Simulated annealing is a variation of hill-climbing algorithms. In a hill-climbing (or
hill-descending, only the sign needs to be changed) algorithm, the system is initialized to
a particular state (e.g., mapping of labels to buttons) and the cost is calculated for that
state. One of the variables of the problem (e.g., a label) is randomly selected and modified
(e.g., moved to a new button). A new cost value is calculated, and if the new cost is less
than the old cost, the change is kept, otherwise the change is undone. In this way, the
system converges to a state where any change would lead to an increase in cost (e.g., where
any change in the mapping would be worse). Hill-climbing techniques have a tendency to
get stuck in local minima of cost because they never accept changes that increase cost. In
complex problems, hill-climbing methods can easily get trapped in a state where any change
only increases cost but the global minimum is very different, with a much smaller cost. What ’

is needed is a controlled way to climb out of local minima and end in a state with the global

46

MFDTool

minimum of cost. By analogy, one would probably, at some point
down a ravine or a small slope to climb to the top of a mountain.

during a hike, need to go

Simulated annealing is a stochastic algorithm that at first accepts changes even if they
lead to larger costs. As time progresses a temperature parameter gradually decreases (this
is the annealing) so that it becomes less likely that a change leading to an increase in cost is
accepted. As the temperature becomes small the algorithm becomes essentially hill-climbing.
As long as the temperature decreases slowly enough and enough changes are considered at
each temperature level, simulated annealing is statistically guaranteed to find the global
minimum of a problem. In practice, though, the necessary temperature schedule is too slow
and the number of changes at each level is too big, so simpler approaches are taken that are
faster, but less certain to find the global minimum.

In simulated annealing, the initial temperature, T, is set large enough that many state
changes are accepted even if they lead to a cost increase. MFDTool sets the initial temper-
ature in the following way. Given the state of the system at the start of the optimization
process, many (50 times the number of page labels) changes are made to the MFD, and the
change in cost is calculated for each change. The average of these cost changes is the initial
temperature for the annealing process. The final state of the system after all these changes
is also the initial state for the start of the annealing process.

Changes are made by randomly selecting a MFD page label. Its button assignment is
noted, and a new button assignment is randomly selected. The selected label swaps positions
with whatever (perhaps nothing) is at the new button assignment. After each change, new
cost, Cnew, is calculated and compared to the cost before the change, Cold. The change in
cost, AC = Cnew - Cold, is calculated. If the cost change is negative, the change is kept.
If the cost change is positive, the change is kept when a random number between zero and
one is greater than

p = exp(-AC/T). (3)

This relationship means that when AC is much smaller than T,-p is close to one, and lots
of changes are kept. As T is gets smaller than AC, p gets closer to zero, and changes are
-not kept very often. Statistically then, the system is more likely to be in a state with a low
cost. As T decreases, the system tends to be stuck in a state with very low cost.

To insure that the statistical situation is close to reality, one needs to implement many
changes at every temperature level. MFDTool makes 300 times the number of page labels
changes at every temperature level. After these changes, the temperature is modified by the
equation

Tnew = 0.99Told. (9) .

The process is then repeated for the new temperature. The whole process stops when it
seems that the temperature is so small that the system is trapped in a particular state (as
in hill-climbing). MFDTool reaches this conclusion when ten changes in temperature have
not produced any changes in cost.

At the end of the simulated annealing process, the system should be in a state with a
low (but perhaps not optimal) cost. Being certain of finding the true optimal state with
the absolute lowest possible cost would be prohibitively difficult and would likely require a
supercomputer, even for relatively small MFDs.

47

MFDTool

2 Using MFDTool

This section discusses how a designer uses MFDTool to aid in the development of a MFD.
Step-by-step instructions are provided, and an example involving the design of an automated
teller machine (ATM) MFD is discussed in detail.

2.1 Running MFDTool

You can download the most recent version of MFDTool from
http : //www . psych. Purdue. edu/-gf rancis/MFDTool/index . html. The most recent ver-
sion of this user’s guide will also be at the same web address. There is no installation
procedure, simply put the files in a directory, of your choosing.

MFDTool is written in Java, so it will run on any computer operating system that
has a working Java virtual machine (VM). Java VMs are available for nearly every modern
operating system; so in principle, MFDTool should run almost anywhere. MFDTool does not
come with a Java VM, but one can be freely downloaded from http: //www . javasoft. corn.
You will need to download either the Java Development Kit (JDK) or the Java Runtime
Environment (JRE). The JDKis necessary if you intend to modify and recompile the Java
source code. The JRE will allow you to run the compiled code. (Although many web browsers
include a Java VM, they cannot run MFDTool. MFDTool must read from and write to the
computer’s hard drive, and the Java VM in web browsers prohibits such actions.)

Different operating systems integrate Java in different ways. With Microsoft Windows
95/98/NT, a Java program is started in a DOS window. In a DOS window go to the directory
containing the MFDTool files and type java mf d and then hit the return key. A window
should appear like that in Figure 1, although it will vary somewhat from one operating
system to another.

2.2 Creating MFD files

-MFDTool needs three basic types of information: a description of the MFD hardware com-
ponents, a description of the hierarchical arrangement of information, and designer-specified
constraints on how the information should be mapped to the hardware components.

2.2.1 MFD hardware

The hardware description includes the number of buttons, their size, and their spatial ar-
rangement. This information is provided by the designer in a single text file. Figure 2 shows
how the MFD hardware information is coded into a format for MFDTool to understand. The
first line of the file contains the name of the MFD, which in this case is ATM. An ampersand
(&) follows the name, and any comments can be placed after the ampersand without being
read by MFDTool. The second line indicates the type of interaction possible for the user
to interface with the MFD. In the current version of MFDTool, this line is irrelevant as
only finger-pointing is supported. The line needs to be present (with the ampersand at the
end of the interaction type and optional comments following), but the contents currently

48

Fae- : ‘- : .__.I ._. .
_’

., ,;: .., I . . L ..,‘x+. ,,,,.,,) ., . . . y I~

. .
._ I . . .I .__. ,,.. ._ .” __‘_,.. :;..-:.‘ “,. ,_. ..,._ “~:.-.r; _: ,A. :

Edit proportion of time user targets this Page:

Select constraint

., ;.,..., I _,_

Select buttons

LI Dad a hierarchy

Add a new constraint

Global movement time v
_ . .-

Constrained pages

Weight

Name

. . . -... : .__. .-. I c
sta;r? obtimiration

Jl

Figure 1: The MFDTool startup window, as seen in Windows 95.

49

MFDTool

ATM & Name
Hand & interaction
6 6 8 xSize, ySize
% Buttons
0.5 0.5 0.1 0.25 8 xSize, ySize, xPlace, yPlace
0.5 0.5 0.1 1.25 & xSize, ySize, xPlace, yPlace
0.5 0.5 0.1 2.25 8 xSize, ySize, XPlace, yPlace
0.5 0.5 0.1 3.25 8 xSize, ySize, xPlace, yPlace
0.5 0.5 0.1 4.25 8 xSize, ySize, XPlace, yPlace
0.5 0.5 5.4 0.25 & xSize, ySize, xPlace, yPlaca
0.5 0.5 5.4 1.25 & xSize, ySize, xPlace, yPlace
0.5 0.5 5.4 2.25 & xSize, ySize, xPlace, yPlace
0.5 0.5 5.4 3.25 & xSize, ySize, XPlace, yPlaca
0.5 0.5 5.4 4.25 L? xSize, ySize, xPlace, yPlace
&&

Figure 2: Contents of the file ATM. hdw, which defines the size of the MFD and the physical
properties of the buttons for the ATM example.

have no effect on MFDTool. In subsequent versions, MFDTool will distinguish between
finger-pointing, mouse movements, cursor tabbing, etc.

The third line contains information on the physical dimensions of the MFD, again ending
with an ampersand, which can optionally be followed by comments. The first number on the
line is the s-dimension (horizontal width) of theMFD in inches. The second number on the
line (the numbers are separated by a single blank space) is the y-dimension (vertical height)
of the MFD in inches.

The fourth line is not read by MFDTool, but acts as a visual separator for the designer
between the earlier information and information about MFD buttons. Each remaining line
specifies details about the size and position of a button on the MFD. As the comments to the
right of the ampersand on each line indicate, the first number on each line is the horizontal
width of the button and the second line is the vertical height of the button. The third and
fourth numbers are the x and y positions of the upper left corner of the button, as measured
from the upper left corner of the MFD frame. All numbers are measured in inches. The very
‘last line contains only two ampersands, which tell MFDTool that there are no more buttons.

From the MFDTool start window select the File menu, and select New. An open file
window should appear. Go to the directory ATM and open the file ATM. hdw. Two new windows
will appear, one titled MFD Hardware: ATM and another titled Hierarchy: ATM. Ignore
the latter for the moment.

Figure 3 shows what the window titled MFD Hardware : ATM should look like on Windows
95. The size of the window is (roughly) six by six inches, and the size and placement of
buttons should correspond to the details specified in the file ATM. hdw. (Even if the size and
placement are off slightly, rest assured that the information used by MFDTool is exactly as
specified in the file. Sometimes Java windows and buttons are created slightly different than
as specified. The calculations of distance and sizes will be based on the designer-supplied
numbers and not on how the MPD Hardware window looks.)

Notice that the two top left buttons have text (OK Password and Cancel) on them. This
text corresponds to page labels that are currently associated with these buttons. Not all of

50

_, .
,’ ;,

- ,‘I : ,..
.I

I.., ., .-

Figure 3: The MFD Hardware window shows the physical layout of the MFD and its buttons,
as specified in the file ATM. hdw.

51

MFDTool

the text may be visible on a button, but this should be of no concern. MFDTool does not
try to exactly emulate what the MFD hardware will look like. Many devices place the text
to one side of buttons, while others place the text directly on the buttons. MFDTool does
not distinguish between these display types. It only cares about the association between the
label and the button. Likewise, MFDTool does not consider whether label text will fit on
a button or next to a button. These types of concerns must be handled by the designer by
choosing appropriate text and font sizes. More generally, the actual text of the labels is for
the benefit of the designer (and ultimately the user), but MFDTool makes no use of the text
itself.

Clicking on a button with a label reconfigures the MFD hardware window to show the con-
tents of the page associated with that label. After selecting OK Password, the MFD Hardware
window will look like the screenshot in Figure 4, with new labels on the buttons. The click
“moved” the display screen down one level in the hierarchy to show the contents of the
OK Password page. You can continue to select labels to move further down the hierarchy.
However, you cannot yet move back up the hierarchy because any necessary hyperlinks that
would move up the hierarchy have not been specified (below).

The MFD Hardware window is designed to give an idea of the current assignment of
information labels to buttons. This allows the designer to determine whether the assignment
is consistent with what was intended.

2.2.2 MFD pages

The text of labels and their hierarchical arrangement must be provided by the designer. This
is done by creating a directory structure using your operating system’s file manager to create
directories and files. MFDTool reads in this file structure and interprets the names of the
directories and files as text labels for the MFD.

Using your operating system’s file browser open the MFDTool folder. Inside is a directory
titled ATM. Open that directory, inside is the file ATM. hdw, which was discussed above. There
is also a directory called Start. The Start directory is the top page of the MFD hierarchy
-(it can be called anything, but there should be only one directory with the * . hdw file). The
Start directory contains two directories titled Cancel and OK Password, which correspond
to the text labels in Figure 3. The OK Password directory contains additional directories
and files that correspond to the text labels in Figure 4.

The set of page labels for the ATM example is defined as the directories and files under
the Start directory, with the MFD hierarchy matching the file hierarchy. To create your
own set of MFD information, simply create a directory and place a * . hdw file in it (with
the specified description of the physical aspects of the MFD) and then create a directory
structure of the information. MFDTool reads in the information to create pages and labels
for those pages. The only restriction on page names is that files should not end in the
extension . hdw or .mfd, as MFDTool reserves those extensions for the description of the
MFD hardware (as discussed above) and for saving an entire MFD (as discussed below).
Some operating systems also place restrictions on directory and file names (e.g., disallowing
blank spaces or special characters). When reading the contents of a directory from the file
system, MFDTool reads in only as many files as can possibly be assigned to buttons. In such

52

Figure 4: The MFD Hardware window after selecting the OK Password label shows the labels
on the selected page.

53

MFDTool

a case, exactly which files are read likely varies from one operating system to another.
MFDTool distinguishes between three types of MFD pages. A parent is a page such that

when that page’s label is selected the MFD screen changes to reveal the contents of the page,
which contains new page labels that can also be selected. A terminator is a page that when
its label is selected the MFD screen may reveal additional information, but does not show
new labels for new pages that can also be selected. A hypedink is a page that when its label
is selected the MFD jumps to another page someplace else in the hierarchy. Hyperlinks allow
the designer to provide shortcuts between distant MFD pages. Hyperlinks also can provide
a means to move up the MFD hierarchy structure, when required.

The designer specifies these types of pages in the directory ‘file structure. Each instance
of a directory in the file structure is interpreted as a parent page. For each file, MFDTool
reads the first line of the file. If that first line consists solely of the word HYPERLINK, then
the page is taken as a hyperlink, otherwise the page is taken as a terminator. If the designer
wants to constrain a special sequence of searches that utilizes hyperlinks, the target page of
the hyperlink must be identified. Details of how to do this are discussed belowm2

Each page has a name associated with it (the name of its associated directory or file),
and that name is the text of the label that, when selected, shows the contents of the page.
For a terminator, selecting the button with its label has little effect because MFDTool is not
concerned with the content shown on a page, only with the ordering of pages that might be
“children” of a parent page.

The MFD information is displayed in multiple ways. First, as already noted above
(Figures 3 and 4), the MFD Hierarchy window shows the MFD information, with each page
name as text on its currently associated button. Second, a Hierarchy window provides
a listing of the contents of the currently selected page. Figure 5 shows what this type of
window looks like after loading the file ATM. hdw as above. The names associated with parent
pages are given an additional ’ ’ > ’ ’ at their end, so the designer can quickly recognize that
selecting such a page will produce movement in the hierarchy.

Movement through the hierarchy of information is done by selecting a text row. Such
a selection has several effects. First, the Hierarchy window changes to show the contents
‘of the selected page (Figure 6). Second, the MFD Hardware window also changes. The two
windows are (almost) yoked so that changes to one results in changes to the other. There
is an exception to this yoking for terminators and hyperlinks, as described below. Third, a
status line at the bottom of the Hierarchy window shows the path of pages leading to the
currently selected page. This helps the designer keep track of which page is currently selected
in the hierarchy. From the Hierarchy window, the designer can move up the hierarchy by
selecting the Show parent of page button, which automatically moves up to the parent of
the currently selected page.

The yoke between the MFD Hardware and Hierarchy windows is not absolute. For ex-
ample, selecting a terminator page in the Hierarchy window makes that page the currently
selected MFD page and allows the designer to impose constraints on that page (described

2Shortcuts and hyperlinks can be created in most operating systems’ file systems. However, the methods
of doing this vary dramatically. To retain platform independence, MFDTool provides an internal means of
specifiying hyperlinks.

54

OK Password > ._.__.-_.._ _._._.___.-._ . .._..... -..-_.._- ___. -__.--_-_.
Cancel :,

_____....._~ _.______--_.-_. . . ___.._. -.----

/Start

Figure 5: The MFD Hierarchy window as it appears after opening the file ATM. hdw.

~huw&r&t ofpage ‘, .

Fast cash > . .._._......__--- ____ -..--- --_.--- ---
Deposit >
Withdrawl >
Transfer >
Account info ’
Cancel

?StartlOK Password
f _ ._ ^ --. ,_, .., _ ,_...... -- -1 .._ -.--1.

Figure 6: The Hierarchy window as it appears after selecting the page name OK Password.

55

MFDTool

below). On the MFD Hardware window, there is no noticeable change in the MFD buttons,
because MFDTool does not show contents of a terminator page but instead shows the con-
tents of the page’s parent. When a terminator page is the current page, selecting a button
in the MFD Hardware window will not have any effect, because the currently displayed labels
are not actually children of the currently selected page. To make the MFD Hardware but-
tons usable, use the Show parent of page button in the Hierarchy window to make the
parent of the selected terminator the new selected page. The buttons on the MFD Hardware
window are now workable. This somewhat confusing relationship is necessary to allow the
designer to select pages that have no noticeable effect on the MFD screen (in MFDTool
anyhow), and apply constraints to those pages. For the same reason, selecting a hyperlink
in the Hierarchy window does not automatically cause the MFD Hardware window to jump
to the hyperlink target. Once selected in the Hierarchy window, clicking on the name of
the hyperlink a second time will cause the MFD Hardware window to jump to the hyperlink
target.

The selection of pages from the MFD Hardware or Hierarchy windows is also yoked to a
third display of MFD page names in the main MFD window. Figure 7 shows this window after
the file ATM. hdw is loaded. All forty-two pages in the ATM hierarchy are listed in the box on
the left side of the MFD window. -4s in the Hierarchy window, a parent page has the added
‘a >‘I to indicate its status. In addition, a hyperlink page has an added “-K” to indicate its
status. Selecting a page from this list updates the MFD Hardware and Hierarchy windows
to display that page (or that page’s parent, if the selected page is a terminator). Figure 8
shows the MFD window after the OK Password page was selected in the Hierarchy window.
Each page listed also has a number, p = 0.023809524, which indicates the default proportion
of times that this page will be needed by the user. MFDTool’s default is to assume that
every page is needed equally often, so this number is one over the number of pages in the
hierarchy, l/42. These proportions can be set by the designer, as described below.

2.3 Setting constraints

-After the MFD hardware and hierarchy are defined, one can start to place constraints on the
association of page labels to buttons. Constraints are defined in the MFD window, with the
Hierarchy and MFD Hardware windows being optionally used to select various MFD pages
for constraining.

The creation of a constraint begins by selecting the type of constraint that is desired.
This is done with the menu choice option on the right side of the MFD window. After the type
of constraint is selected, click on the New constraint button. What to do next depends on
the type of constraint selected, as discussed below.

2.3.1 Global movement time

This constraint acts to minimize the average movement time as the user goes through the
hierarchy to access different MFD pages. The designer has the option of providing a name for
this constraint (the default is C#, where # is the number of constraints currently defined).
The name is listed in the text field on the bottom right of the MFD window. The designer

56

Editproportion oftime usertargetsthls Page:

J _ _. __ ._ ̂__.. ._
Restrictiononproportion

@ Free

c Fixed

Select constraint
$10 i=O.O23809524
$20 p=O.O23809524
Cancel-e p=O.O23809524
Fastcash> p=O.O23809524
Savings pO.023809524
Checkrng p=O.O23809524
Cancel-c p=O.O23809524
Deposit, p=O.O23809524
Cancel-s p=O.O23809524
Checlong p=O.O23809524
Sawngs p=O.O23909524
Wrhdrawl> p=O.O23809524
Cancel-< p=O.O23809524

1

CheckingToSavings p=O.O23809524 i'
SavingsToChecking p=O.O23809524 %.
Transfer' p=O.O23809524
Cancel-e p=O.O23809524
AccountSalance p=O.O23809524 .:.
RecentTransactions p=O.O23809524
Savings. p=O.O23809524
RecentTransactions p=O.O23809524 :
Cancel-s p=O.O23809524 _ . . .3

Some hyperlinks are notresolved.

Select buttons

Add anewconstrarnt

Globalmovementtime ;

Constrainedpages

Weight

Figure 7: The MFD window as it appears after opening the file ATM. hdw.

57

MFDTool

0.023809523809523808 _ ._^_^.^ ___. -_ ̂ ...^^_... _- ̂ . . ^. __. _ ._. ._ . ._ ̂ .^

RecentTransactions p=O.O23809524A
Savings = prO.023809524
Recenffransacttons p=O.O23809524
Cancel-c p=O.O23809524
AccountBalance p=O.O23809524 ‘1
Checking = p=O.O23809524
Cancel -a p=O.O23809524

:’

Car p=O.O23809524
Cancel -* p=O.O23809524 ‘>

hlottgage p20.023809524
Personal p=O.O23809524 ,,:
Loans > p=O.O23809524
RecentTransactions p=O.O23809524 .;
Cancel-c p=O.O23809524
Balance p=O.O23809524
CreditCard > p=O.O23809524 .

Account info s (FO.023809524
-.
‘

.2

ICancel> o=O.O23809524 ‘..I

Select constraint Add a new constraint

,..x ,,,.. .T , . _ ^ _ _ . , , , , , . ” I , :

Det$econstrarnt Ed&consJaint

Select buttons

Weight

Name

Figure 8: The MFD window as it appears after selecting the page name OK Password.

58

MFD’Tool

Fk
,,. 2. .A

.~ ~. I. __ .

Editproporttonoftimeusertargetsthispage: Fastcash

Restrictiononproporbon

c Free

t= Fixed

,“_ *,.: _ ...i”..r.. .- . C---Langestopaga. - ” : -.: ..: _ _ ‘.. j

$50 ~~0.014634146 .

$10 p=O.O14634146
$20 p=O.O14634146
Cancel- p=O.O14634146
Fastcash. p=O.4
Sawngs p=O.O14634146
Chechng p=O.O14634146
Cancel- p=O.O14634146
Deposrt, p=O.O14634146
Cancel- p=O.O14634146
Cheching p=O.O14634146
Savings p=O.O14634146
Widrawt' o=O.O14634146 +
Cancel- ~0.014634146
ChecldngToSavtngs pO.014634146 :.
SavtngsToChecking p=O.O14634146 ~1
Transfer, p=O.O14634146
Cancel- p=O.O14634146
Accountealance ~0.014634146
RecentTransactions p=O.O14634146 :-
Sanngs> p=O.O14634146
Recenffransacttons pO.014634146 ’
Cancel- p=O.O14634146 LJ

Some hvpertinks are notresolved.

Selectconstrarnt

Fastaccess

Select buttons

I b7
b8

Addanewconstraint

I Globalmovementtime
.... . .__” - .^._I x .- _,-... j. ..-. i_

Nevieottstralnt ‘-:..:
.,a . . .,

Savdconstrarnt -,‘,, %:“

Constrained pages

- . . ;..._ _. . _..- “.” .__. . .._... ., -.:. i
Rerrxve'sefeC~dpagE :” Rd MFDpsgo

Weight I 1.0

Name JilililTDII

.?.?.r;....o.,

Figure 9: The MFD window as it appears after creating and saving the constraint Fast
access. The upper part of the window shows the selection of information to apply a fixed
proportion of 0.4 to the page Fast cash. Notice that the proportions of the other pages is
smaller than in Figure 8, which reflects the renormalization after setting Fast cash propor-
tion to 0.4.

also has the option of setting the weight for this constraint in the textfield directly above
the name textfield, the default is 1.0. Once the name and weight are as desired, click on
the Save constraint button. The list box in the middle of the MFD window now shows
the name of the just saved constraint. Figure 9 shows what the MFD window looks like after
the constraint is created and saved. There is no reason to include more than one Global
movement time constraint.

From the listing of constraints, you can select (by clicking on the name) and delete or
edit a constraint. For editing, clicking on the Edit constraint button loads the selected
constraint’s properties into the appropriate constraint fields. Changing what is in those fields
and then clicking on the Save constraint button updates the properties of the constraint.

The optimization on this constraint considers the proportion of time each page is needed.
The page proportions can be set at any time. Select a desired page (from any of the windows,
but remember that the MFD Hardware window cannot select a hyperlink). The top part of

59

MFDTool

the MFD window shows information on the selected page. In the text field it shows the current
proportion of time the page is needed by the user. To change this proportion simply edit
that number. Then click on the Fixed option of the Restriction on proportion radio
button. MFDTool will renormalize all the free proportions to reflect the adjustment to this
page’s new proportion. Making the proportion of this page fixed means that it is not subject
to this renormalization.

In an ATM MFD, the Fast cash option is probably used more than any other. Figure 9
shows the MFD window just after saving the proportion for the Fast cash page to be 0.4.
Clicking on the Save changes to page button updated the proportion for this page and
renormalized the non-fixed proportions for other pages. Note that the proportions for the
other pages are smaller than in Figure 8.

2.3.2 Pages to close buttons

This constraint has two main purposes. The first is to place specified labels on the same
MFD screen as close together as possible. The second is to place specified labels on different
MFD screens as close together as possible (where association with the same button is best).
To create this type of constraint, select Pages to close buttons from the menu choice on
the right side of the MFD window. Set the name and weight as desired. To assign selected
pages to this constraint, select a page from any of the windows. It will be highlighted in the
page list in the MFD window. Just above the t&field for the constraint weight is a pair of
buttons and a list box. Click on the Add MFD page and the currently selected MFD page
will be part of this constraint. The name of the page will appear in the list box. You can
select additional pages from the MFD and add them to the constraint, or select a page from
the list of constrained pages and click on the Remove selected page button to delete the
page from the constraint. Once all the desired pages are added to the constraint, click on
the Save constraint button, and the constraint’s name will appear in the constraint list.
The constraint can be deleted or edited, as described above. Figure 10 shows what the MFD
window looks like after all the pages with the name Cancel are constrained to be close to
-each other. The weight for this constraint was set to 1000 to be absolutely certain that this
constraint is satisfied, even if it means an increase in overall search time.

2.3.3 Pages to fixed buttons

This constraint allows the designer to restrict specified page labels to specified buttons. To
create this type of constraint, select Pages to fixed buttons from the menu choice on the
right side of the MFD window. Set the name and weight of the constraint as desired. Assign
selected pages as for the Pages to close buttons constraint, above. In addition, from the
list of Select buttons, click on the names associated with the buttons you want the pages
to be restricted to.3

3At the moment the interface here is less than optimal. The buttons are named W, bn, where there
are TZ buttons. The order of the buttons is as given in the MFD hardware file, which in the ATM example
is ATM. hdw. Future versions of MFDTool will offer ELII improved system of identifying which name in the
button list corresponds to which button in the MFD Hardware window.

60

Edit proportion oftime usertargets this page: Cancel

0.023809523809523808 _ _ . ._ .__“.

)I... .‘_2 b..ICT_,.-.“r._.~ ,r ., y_z,y:

.:: 3, ,_.““)
._.

/RecentTransactions p=C
Savings) p=O.O23809524
RecentTransactions
Cancel -<

p=O.O23809524 ‘1 ~afc~~~ame place
p=O.O23809524

Personal p=O.O23809524
oans > p=O.O2380952

Constraint added

~e,ete;;n&ir& ‘..~t&&n+.

Select buttons

b0 A

bl
b2
b3

I

b4
b5
b6
b7
b8 A

Add a new constralnt

Pages to close buttons ? ._, _

Constrained pages

Cancel
Cancel
Cancel

Figure 10: The MFD window as it appears after creating and saving the constraint Cancel at
same place. The list Constrained pages shows all the pages restricted by this constraint.

61

MFDTool

‘,Fjf&_-- - i._,x_ ~:‘_,;2,.‘:,. .:;,::.ir.. ;_.,;,-i -: --:1. ‘;., c ,’ L I.
, “.. ., . . .i.,ii .,,.z. xrr.“, “.r .,.. x ,., ,_._.. I ..,., *: ,, .:. .; L. ” L.. ..: ,.: “.. . _ ~. ._

Edit proportion oftime usertargets this page: Cancel

Restriction on proportion

6 Free

c Fixed

Add a new constraint Select constraint
Savings *r p=O.O23809524

Cancel -* p=O.O23809524

Cancel -* p=O.O23809524
Car p=O.O23809524
Cancel -< p=O.O23809524
Mortgage p=O.O23809524
Personal pO.023809524
Loans > pPO.023809524

Cancel -< p=O.O23809524
Balance p=O.O23809524

p=0.023809524
Cancel -* p=O.O23809524
OK Password * rFO.023809524

.”
‘_: -

Constraint added

Fast access
Cancel to same place
Cancel on bottom

Select buttons
3

Constrained oases

Cancel
Cancel
Cancel

I 1000
Weight

Name I
Cancel on bottom

Figure 11: The MFD window as it appears after creating and saving the constraint Cancel
on bottom. The list Constrained pages shows all the pages restricted by this constraint.
The list Select buttons shows the buttons that the constrained pages must be restricted
to.

Figure 11 shows the MFD window after the designer has introduced a constraint to place
the Cancel labels to be on either of the two bottom buttons. Notice that in combination
with the constraint to place all the Cancel labels on the same button, the optimized MFD
design should put all the Cancel labels on either the bottom right or the bottom left button.

2.3.4 Path movement time

This constraint applies to a designer-defined special sequence. This type of constraint is
most applicable to a MFD that includes hyperlinks. Before discussing how to apply this
constraint, the following describes how to define hyperlinks.

A page that consists of a hyperlink is a shortcut to a different part of the MFD hierarchy.
Selecting a properly defined hyperlink in the MFD Hardware window makes the hyperlink
target page the currently selected page and displays that page (or its parent if the target is
a terminator). When the directory structure that defines the MFD hierarchy is loaded into

62

MFDTool, there is no way to identify the targets of hyperlink pages. The designer must
define the hyperlinks within MFDTool. This is done from the MFD window.

Hyperlinks that have not had their target defined are shown in the page listing on the
MFD window with an additional ’ ‘-< ’ ’ added to their name. If a hyperlink is selected
from this list (or from the Hierarchy window), the top part of the MFD window displays
information on the page, its proportion of being needed, whether that proportion is fixed
or not, and the hyperlink target. The button labeled Change hyperlink is also clickable
when the selected page is a hyperlink. Clicking on this button puts MFDTool into a mode
whereby selecting a page from any window places that page as a potential target for the
hyperlink. This is visible in the text to the right of the Change hyperlink button, which
displays the selected page name. When the desired page is set as the target for the hyperlink,
click on the Save changes to page button and the hyperlink has now been defined. Once
a hyperlink is defined, the page listing on the MFD window replaces the ’ ‘-<’ ’ with ’ (--’ I.

Figure 12 shows the MFD window right after one of the Cancel pages has had its hyperlink
set to the Cancel page at the top of the hierarchy (this Cancel page is not a hyperlink, but
a parent page that shows options for the user after the Cancel button has been pressed). If
a hyperIink is not defined, MFDTooI treats it as a terminator page.

To create a path movement time constraint, select Path movement time from the menu
choice on the right side of the MFD window. Set the name and weight of the constraint as
desired. The designer now needs to assign pages to the constraint in the same order that
the user will travel through the pages along the “special path.” Select the first page along
the path, and click on the Add MFD Page button. For each subsequent page along the path,
select that page and click on the Add MFD Page button. The order that the pages are added
to the constraint is the order that MFDTool will assume the user will move through the
hierarchy.

Once the path is defined, click on the Save constraint button. Figure 12 shows the
MFD window after saving a short Path movement time constraint.

2.4 Optimizing

Once all the desired constraints are set, click on the Start optimization button on the
lower right of the MFD window. Depending on your computer, the size of the hierarchy, and
the complexity of the constraints, the optimization process may take a few tens of minutes
to several hours.

There is no way to adequately describe the effect of optimization in written text. A pre-
viously optimized design is included with MFDTool. Start MFDTool and go to File+Open.
From the open file window, select the directory ATM and then the file ATMbest .mfd. A new
set of MFD, MFD Hardware, and Hierarchy windows will appear. Clicking through the MFD
Hardware and Hierarchy selections will give a good idea of the assignment of page labels to
buttons.

The optimization is, of course, relative to the defined constraints. You can explore the
chosen constraints from the MFD window. Of special note, this example set the search proba-
bilities of two pages OK Password+Fast cash and OK Password+Withdrau-+Checking to

63

MFDTool

.Edttproporttonoftimeusertargetsthispage: Cancel

Restrictiononproportton

6. Free

c Fixed

IRecentTransacttons o=O.O14634146~ Selectconstraint -
Savtngsr p=O.O14634146
RecentTransactions p=O.O14634146 'i
Cancel- p=O.O14634146
AccountBalance p=O.O14634146 .
Checking> p=O.O14634146 j

CanCel- p=O.O14634146
Car p=O.O14634146
Cancel- p=O.O14634146
Mortgage p=O.O14634146
Personal ~0.014634146
LOanSa p=O.O14634146
Recenffransacttons p=O.O14634146
Cancel- p=O.O14634146
Balance p=O.O14634146
CreditCard> p=O.O14634146
Accountinfo s p=O.O14634146
Cancel- p=O.O14634146
OKPassword. p=O.O14634146
Exit p=O.O14634146
NewTransacCon- p=O.O14634146
Cancels p=O.O14634146
Startt p=O.O14634146

Some hypertinks are notresotved.

Addanewconstraint

Constrainedoaoes
L .__ ^_.. _ .- .-. ___.

_
^ _. I __ _.- .;.,. “:_‘_,-_._ ~‘ . r,:_7_. - L_~

.Delete cqtraint ,..EcUtoo_~traint.. Cancel
NewTransaction I

Select buttons

b4
b5
b6
b7

I
b6
b9

r
eltoNewTransactton

Figure 12: The MFD window as it appears after creating and saving the constraint Cancel to
New Transaction. The list Constrained pages shows the path of pages restricted by this
constraint. In this case, the path starts at the Cancel hyperlink under Fast cash and goes
to the New Transaction page under the Cancel page near the top of the hierarchy. The top
part of the window shows that hyperlink Cancel, under the Fast cash page, is a hyperlink
to the Cancel page at the top of the hierarchy. Thus, selecting Cancel under Fast cash
jumps the MFD to the Cancel screen. From that screen, NewTransaction can be selected.
MFDTool will assign page labels to buttons so that movement time is minimized along this
path of pages.

64

0.4. The resulting design minimizes the movement between buttons to reach these pages.
Xote too that the resulting design deals with a number of subtle issues. For example,

from the OK Password page note that Account info is on the middle button on the left
side. After clicking on the OK Password button (top, left side), one will have to move down
to click on this button. One must move down yet two more buttons to reach the Transfer
page. The Account info button is closer to the OK Password button than the Transfer
button. This is because the Account info page has more information underneath it than
the Transfer page. This means that, with the assumption that every “free” page is needed
equally often, the user will go through the Account info page more often than the Transfer
page. Thus, the best design is to assign the Account info page label to a button that is
closer to the OK Password button.

Also note that after selecting a button, the page labels on the next screen tend to be
right around the button that was just clicked. This minimizes movement. Other constraints
are also satisfied. All the Cancel labels are on the same button (bottom, right). The dollar
amounts under the Fast cash page are lined up in order.

In short, once the MFD hardware, hierarchy, and constraints are defined, the optimization
is handled by the computer. The optimization is exceedingly thorough, and considers many
details that a human designer will likely not have the time to deal with.

2.5 Saving MFDs

Once a MFD and its properties are defined, the entire set can be saved as a file. Simple select
File+Save. In the file window, select a directory and type a filename (it is recommended
that you use the extension . mf d, though this is not absolutely necessary). This file holds all
the properties of the MFD and can be opened later.

3 Conclusions

_MFDTool provides a means of optimizing the association of MFD hierarchical information
with MFD buttons. Creating an effective association is difficult because of the large num-
ber of variables involved in the task. MFDTool quantifies the variables, thereby allowing
standard optimization approaches to be applied to the problem.

MFDTool should rarely be used in isolation from the rest of the design process. Instead,
it will probably be most beneficial as a collaborator with a designer. That is, a designer may
create one hierarchical organization and hardware configuration and then run MFDTool to
find the optimal layout of information. From that starting point, the designer can consider
the effect of changing the hierarchical organization or hardware configuration, and re-running
MFDTool for each change. The only fair comparison across different hierarchical or hardware
configurations is relative to their optimal association. Such comparisons would have been
nearly impossible in the past because the association itself was very difficult to optimize.
MFDTool greatly simplifies this process, thereby allowing the designer to compare a larger
set of possible designs.

65

