
USAARL Report No. 98-33

.

Designing Optimal Hierarchies for
Information Retrieval with

Multifunction Displays

BY

Gregory Francis

Purdue University

Aircrew Health and Performance Division

July 1998

Approved for public release, diitribution unlimited

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 3636200577

Notice

Oualified reauesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DT’IC), Cameron
Station, Alexandria, Virginia 223 14. Orders will be expedited if placed through the librarian or other
person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic
mailing lists should confirm correct address when corresponding about laboratory reports.

DisDosition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained.in this report are those of the author(s) and should not be
construed as an offkial Department of the Army position, policy, or decision, unless so designated by other
offkial documentation. Citation of trade names in this report does not constitute an offkial Department of
the Army endorsement or approval of the use of such commercial items.

Human use

Human subjects participated in these studies after giving their free and informed voluntary consent.
Investigators adhered to AR 70-25 and USAMRh4C Reg 70-25 on Use of Volunteers in Research.

Reviewed:

Colonel, MS
Director, Aircrew Health &

Performance Division
Released for publication:

J&N A. CALDWELL, Ph.D. 1
Cfiaixman, Scientific Review Colonel, MC, SFS

Commanding Committee

Unclassified
ZXURrrY ClASSlFlCATlON OF THIS PAGE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

la. REPORT SECURIM CLASSIFICATION

Unclassified
2a. SECURITY CLASSlFlCATlON AUTHORlTY

2b. DECLASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANLZATlON REPORT NUMBER(S)

USAARL Report No. 98-33

6a. NAME OF PERFORMING ORGANlZATlON

U.S. Army Aeromedical
Research Laboratory

6b. OFFICE SYMBOL
(If applicable)

MCMR-UAD .
6c. ADDRESS (City* State, and ZIP Code)
P.O. Box 620577
Fort Rucker, AL 36362-0577

Ba. NAh4E OF FUNDING I SPONSORING
ORGANIZATION

I

8b. OFFICE SYMBOL
(If applicable)

Bc. ADDRESS (City, State, and ZIP Code)

I

I.

I

I.

.I

I.

.I

.I

.

,

I

I b. RESTRlCTlVE MARKINGS

3. DISTRIBUTION /AVAlLABlLllY OF REPORT

Approved for public release, distribution
unlimited

5. MONITORING ORGANlZATlON REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANlZATlON
U.S. Army Medical Research and Materiel
Command

7b. ADDRESS (City, State, and ZIP Code)
Fort Detrick
Frederick, MD 21702-5012

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

IO. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

62787A 30162787A879

TASK WORK UNIT
NO. ACCESSION NO.

PB DA336445

11. TITLE (Include Security Classhicetion)
Designing Optimal Hierarchies for Information Retrieval With Multifunction Displays (II>

12. PERSONAL AUTHOR(S)
Gregory Francis

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

16. SUPPLEMENTAL NOTATION

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse ifnecessary and identifj’by block number)
FIELD GROUP SUB-GROUP Cockpit design, hierarchy, multifunction displays,

workload

19. ABSTRACT (Continue on reverse if necessary and idenHy by block number)
Modern aircraft use computer screens with a push button interface to replace a variety of
single-purpose instruments. Such multifunction displays (MFDs) are gradually being
introduced into military helicopters, with future aircraft likely to be highly dependent
on computers. Studies have shown that poor design of MFD hierarchies has a significant
impact on user satisfaction and performance. The purpose of this study was to extend a
theoretical analysis of hierarchy search into a methodology for gathering data and
building a hierarchy layout that minimized the time needed to find items in a hierarchy.
Pilot studies demonstrate the effectiveness of the methodology and show that optimizing
hierarchy layout may lead to a 25% reduction in search times.

n~s-nm mnl ISTRACT 21. ABSTRACT SEC1 URllY CiASSlFlCATll DN

!2a. NAME OF RESPONSIBLE INDMDUAL

BD Form 1473, JUN 86

(334) 255-6907 MCMR-UAX-SS

Unclassified

Table of contents

Introduction ... 1

General approach .. 3

A hierarchical interface ... 3

Measuring motor time .. 5

Measuring categorization time .. 5

Optimizing hierarchical layout .. 7

Testing7

Example 1 ... 7

Example 2.. ... 12

Conclusions ... 12

References .. 15

Appendix A. Hierarchy search computer software.. .. 17

Appendix B. Summary of Java classes ... 18

Appendix C. Java source code28

List of figures

1. Schematized drawing of two pages from an MFD display and its push-button

interface . 2

2. Three displays from the program designed to investigate user interactions in

hierarchical search. .._.......... 4

3.

4.

5.

The program for measuring motor time . 6

Mean search times . 9

Hierarchy displays along the path to Monterrey, Mexico, for the optimized hierarchy.
11

... 1I

6. Mean search times for users in the second pilot study. .. 13

A- 1. The Java classes written to explore hierarchy searches. .. 17

. . .
UJ

Introduction

Military and civilian aircraft in the 1960’s and 1970’s used many separate gauges, dials, lights,
switches, buttons, circuit breakers, control wheels, and levels in tightly packed aircraft cockpits.
The introduction of new instruments and data sources forced a competition for limited cockpit
space. This competition was partly alleviated by the introduction of microcomputers and video
displays into the cockpit environment. Multifunction displays (MFDs), capable of presenting a
variety of information from different sources, replaced many electromechanical devices, thereby
freeing room in the aircraft cockpit. Current MFDs are often similar in appearance and usage to
automated teller machines in that crew members push buttons to move through a hierarchy of
display pages containing instructions, information, or lists of user-activated functions. They
increase the total amount of available information, with the limitation that only some of it is
visible at any given time. An additional benefit of MFDs is to provide a simpler layout of
cockpit instrumentation, so that crew members spend less time scanning for information and
more time piloting the aircraft. The reduction in pilot workload due to the introduction of MFDs
in the cockpit was a primary factor in eliminating the need for flight engineers in many current
generation transport aircraft.

Figure 1 schematizes MFDs as they are used in a variety of modern aircraft. Formation is
supplied on a large computer monitor. Pushbuttons surround the monitor to allow the crew to
interface with the MFD computer. Figure 1A shows real-time status information from the
aircraft engines and other aircraft systems (SYS). Figure 1B shows targeting information. The
push-buttons along the sides of the MFD are associated with software-generated display labels,
indicating jumps to additional display pages containing related information. Pressing a soft-key
causes the MFD to display a new page containing the information or functions indicated by the
key’s label.

MFDs typically contain a wide range of single and multistep functions. The type of objects
and information displayed on the MFD, the data acquisition channels that are represented by the
displayed objects, the set of active database links, as well as the functions that soft-keys can
activate are commonly grouped together logically on one or more interconnected display pages.
Pilots dynamically select a display based on the information and functionality desired to
accomplish changing flight management or combat tasks such as situational awareness,
navigation, communications, systems monitoring, battlefield and threat monitoring, and
targeting.

Despite the significant impact of MFDs on the layout of instrumentation in aircraft cockpits
and the responsibilities of crew members, little is known about how users search for information
in such systems. Several studies have investigated the physical characteristics of the displays
and the push-button interface (e.g., Rash and Becher, 1982; Hannen and Cloud, 1995; Klymenko
et al., 1997). These studies help insure that crew members can see the monitor and reach the
buttons for a variety of conditions (e.g., direct sunlight using protective gloves). Other studies
explore the opportunity to create new types of information displays (e.g., Braithwaite et al.,
1997). In contrast, there has been little research to insure that crew persons can quickly search
through the hierarchy of information in the MFD database to retrieve needed information.

Figure 1. Schematized drawings of two pages from an MFD display and its push-button interface.
In 4 the systems page shows information on engines and includes legends along the
right to indicate that pressing the associated button will cause the display to present the
requested information. In B, the same display screen shows a page with targeting
information.

The military guidelines (MIL-STD-1472D) for development of the hierarchical structure of
information in the MFD provide few instructions and little justification. The small number of
studies investigating hierarchy design issues may reflect the difficulty of the problem. As described
in Francis and Reardon (1997), small changes in part of a hierarchy can have profound effects on
search times elsewhere in the hierarchy. Such sensitivity makes general guidelines difficult to
apply. As a result, hierarchy creation currently remains an artistic endeavor, depending primarily on
the experience and intuition of the designer.

The few studies exploring the impact of hierarchy design suggest that it is important. In non-
military domains, hierarchy design has been identified as a key factor in overall performance and
satisfaction with an MFD type device (Seppala and Salvendy, 1985; Cook and Woods, 1996).
Studies using simulated military aircraft suggest that MFD hierarchy design may affect crew
workload and situation awareness (e.g., Reising and Curry, 1987; Sirevaag et al., 1993).

To promote a more rigorous analysis of hierarchy design, Francis and Reardon (1997)
developed a mathematical framework that considers a variety of factors in hierarchy design. The
current document shows how to apply that framework to particular cases of hierarchy design.

General apnroach

MFDs trade a search of physical space for a search of virtual space through the hierarchy of
information. Other things equal, it is desirable to arrange the hierarchy of information in a way
that minimizes the search time. Francis and Reardon (1997) provided a theoretical fiamework to
consider this issue. They identified an optimization method that chooses the best layout of
information in the hierarchy. For the optimization method to succeed, it required a model of the
time needed to search through the virtual space of the MFD hierarchy. In this section, we briefly
summarize the model proposed by Francis and Reardon and show how to apply it to a particular
design task.

Each page in an MFD hierarchy defines a unique path of button pushes that terminates when
the page is shown. Measuring the time to reach a hierarchy page requires knowing the time
needed to move to and push the various buttons along the path to the page. These movement and
push times all contribute to a motor term. These times are possibly distinct Corn the time
required to decide which button to push. Such decisions require reading various choices until the
option leading to the target page is identified. The times to read, interpret, and decide to select
contribute to a categorization term. Together with any computer response time, this analysis
suggests that the time toereach a page in the hierarchy will be:

T = (motor) + (categorization) + (computer response).

Each of these terms is likely to vary with the pattern of button pushes that define the path, the
options to be categorized along the path, ‘and the information displayed by the computer. By
considering the variations in these variables for different buttons and items, the optimization
method selects a layout that maximizes performance according to any designer-imposed
constraint. This approach uses information in the details, or microstructure, of the human-
computer interface to maximize performance.

The analysis in Francis and Reardon (1997) was theoretical; it described equations and
techniques for identifying an optimal layout of information when specific data were available.
We now explore methods for gathering the needed data and demonstrate the utility of the
method. For that purpose, we developed a suite of computer programs to investigate hierarchical
searches. The programs will be described briefly in the ensuing text and more fully in the
appendices. The next section describes the basic interface used to explore hierarchical search.
Data were gathered from this interface-using methods described in subsequent sections. The data
were then used to build an optimal layout of pages that considers the microstructure properties of
the human-computer interaction. The validity of the optimization method was then verified with
further experimentation.

A hierarchical interface

To investigate the microstructure of hierarchical information retrieval, we wrote a program in
the Java programming language that allowed users to select virtual buttons with mouse controls.
Selecting a button moved the user through a virtual hierarchy of information and generated a
new set of options associated with each button. Figure 2 shows snapshots of the interaction
window at various positions along a path to a target item. In this case, the display portrays

3

A

B

C

Figure 2. Three displays from the program designed to investigate user interactions in
hierarchical search. The user is given a target item in the center of the window and
moves through the hierarchy to find the item. The user moves through the hierarchy
with successive mouse clicks on the appropriate buttons to reach the target. A shows
the top level, where buttons code major systems in a helicopter. B shows a screen
from the second level, where buttons code various aircraft systems. C shows a screen
from the bottom level, where buttons code various types of rotor information,
including Tail-RPM, the target item.

4

aircraft information suitable for use in a military helicopter. After pressing the Next target !

button, a target item (sometimes paired with its parent to help the user find it) was displayed in
the center frame. The user was to move through the hierarchy toward the target item as quickly
as possible.

Figure 2a shows the top level of the hierarchy, where the options are various aircraft
information and the target is Tail-RPM, Rotor. Selecting the AircraB-SYS button changes the
labels on the buttons to those shown in Figure 2b, where the options are various choices in
aircraft systems. Selecting the Rotor button changes the labels to those in Figure 2c, which show
options for the rotor system. Selecting the TaiZ-RF%4 button means that the user has found the
desired item. This basic scheme was used in a number of different ways to explore hierarchical
search.

Measuring motor time

Defining the motor term of the model requires identifying the time needed to make button
presses and to move the mouse control between buttons. This cannot be done during a normal
hierarchical search because the time to find an item includes both the time to physically push the
correct buttons and the time to categorize items. We hypothesized that the motor time could be
isolated in a situation where the user knew in advance where to move the mouse control. In such
a situation there would be no categorization time.

Thus, we created a program that required the user to select pairs of buttons. Figure 3 shows a
snapshot of the program window. Each button is numbered between 0 and 7. The center region
specified the pair of buttons that were to be pressed in succession. The program measured the
time between the first and second button presses. This measure was repeated for every
combination of successive button presses, including repeated selection of the same button. (The
only exception was that the user was never asked to make a movement that ended in the Next
zkzrget button, as such movements never occurred during searches of the hierarchy.) The time for
each movement was measured several times, and the average stored in a file for later use.
Because the user could plan the movement before the first button press, we hypothesized that the
movement time was a pure measure of how long it took to physically move and initiate the
mouse control.

Measuring categorization time

The optimization technique described in Francis and Reardon (1997) required, in addition to
the motor times, the time needed to categorize items. Unlike the technique for measuring motor
times, there seems to be no diiect method of measuring categorization times. Any measure of
response time necessarily will include both categorization and motor times. We need to
disentangle these terms so that the model can predict response times when the hierarchical layout
is restructured and the items are paired with new motor times.

To disentangle response times, we modified the basic hierarchy search program so that it
measured the time between successive button presses as the user went through a path toward a
target item. The time between button presses was coded by item name and stored in a file for
later use. We refer to these measures as between item search times.

Figure 3. The program window for measuring motor time. The center panel displays a
sequence of button presses for the user to perform. The program measures the time
between the first and second button press. Since the user can find the buttons to be
pressed before starting the movement, the time should include only motor time.
Motor time was measured in this way for every pair of buttons.

Next, we used the previously measured motor times between button presses and the between
item search times to derive categorization times. We used the following logic. The between
item search time includes both motor and categorization time. Thus, subtracting the motor time
from the between item search time should leave an estimate of the categorization time. This
calculation was performed for every item in the hierarchy.

This approach has the benefit of avoiding another difficult problem in measuring
categorization times. Previous attempts to model hierarchical search have noted that
performance critically depends on the search strategy utilized by the user (Lee and MacGregor,
1985; Paap and Roske-Hofstrand, 1986; Vandierendonck Van Hoe and De Soete 1988). In an
extreme case, if the user is very familiar with searching through the hierarchy and knows the
button presses needed to reach each item, categorization time will be negligible. On the other
hand, if the user has no experience searching through the hierarchy, categorization time will be
substantial and highly dependent on the details of the user’s strategy. More commonly, a user
will know the button presses needed to reach some items in the hierarchy but will need to search
labels to find the path for other items. Such effects are likely to be highly dependent on the items
in the hierarchy and their significance to a particular user, so there is probably no way to model
the effects of learning.

Our measure of categorization time avoids modeling learning effects by measuring the
resulting behavior that depends on those effects. From the point of view of predicting search
times, it does not matter why some items are categorized more quickly than others, what does

6

matter is how long it takes to categorize each item. Our measure calculates the needed
information directly without worrying about the underlying details.

With the motor and categorization data, it is possible to predict the time required by the user
to find an item for any layout of information in the hierarchy. To make this prediction for a
single item, the computer simply notes the path needed to reach the target item, the buttons that
must be pushed along that path, and the items that must be categorized along the path. The time
for all button pushes and movements and the time for all categorizations sum to equal the
predicted search time.

Optimizing hierarchical layout

With the ability to predict search times for any layout of information in the hierarchy, it is
possible to search through different layouts for the one that minimizes expected search time.
Unfortunately, there are so many different possible distributions of items in the hierarchical
structure that it is not feasible to consider them all. Instead, we used a computational technique
called simulated annealing, as described in Francis and Reardon (1997). This computational
algorithm sifts through the possible hierarchical layouts to consider only those that have the best
chance of generating small search times. While the algorithm does not guarantee to find the
optimal layout of items in the hierarchy, in practice it usually produces a layout with a search
time close to the optimal.

Testing

A final program takes the hierarchical layout generated by the optimization program and
generates the button interface for user interaction. As the user searches for specified target
items, the computer keeps track of the search times. After the user is finished searching for
items, the program writes to a file the predicted mean search time (as generated by the
optimization program) and the mean actual search time (as measured during the user’s
interaction). These are then compared to each other to consider the accuracy of the model’s
predictions. They are also compared to the original time required to search for items in a non-
optimal hierarchical layout of items. The next two sections describe pilot studies that used this
general approach to hierarchy design.

Examnle 1

The first example shows application of the method using data gathered Corn a single user (the
first author). The hierarchy portrayed geographical information (continent, country, city) instead
of the aircraft information portrayed in Figure 2. This change was incorporated to insure that
subjects not familiar with aircraft systems could participate. The methodology of building an
optimal hierarchical layout remains the same regardless of the information in the hierarchy.
Subjects were asked to move through the hierarchy to click on the button for a city, country, or
continent.

The programs described above were run on a laptop computer. Of note, the mouse control
was utilized through a touchpad device, which is common on a variety of laptop computers. A
touchpad is a. small touch-sensitive pad. A light touch on the pad gives the user control of the
cursor placement. Dragging a finger along the surface of the touchpad moves the mouse cursor
in the same direction. A mouse click is initiated by quickly tapping twice on the touchpad in the
desired location. The touchpad device is useful for laptop computers because it offers the
functionality of a mouse with small space requirements. However, precise control of cursor
movement is somewhat difficult with the touchpad, and correction adjustments are frequently
necessary. It is also sometimes difficult to start and stop movement of the mouse cursor,
especially for small movements. As a result, sometimes a larger movement can be accomplished
more quickly than a short movement. None of these characteristics affected the basic approach
to hierarchy design, and motor movement times ‘were gathered as described above. For each
movement, the average of 10 replications was used as the measure of motor time.

Ifall items in the hierarchy are accessed equally often, and the user is very familiar with the
path for each item, there is no difference between hierarchical layouts. Such situations are
probably very rare. For most MID applications, some items are searched for more often than
others. The goal of the design process is to place frequently searched items at the end of
hierarchical paths that are quickly accessed. To emulate the inhomogeneity of search frequency,
we created artificial mission scenarios. Each scenario required the user to search for a fixed set
of 20 randomly selected items from the full (268 item) set. In each scenario 10 of the items were
searched for 5 times and the other 10 were searched for once. For each scenario, we gathered
categorization data and built and tested.an optimal hierarchy.

To gather categorization data, the hierarchical layout was partially randomized so that every
item was located underneath its appropriate header category, but was in a random (fixed)
position under that header (e.g. each city remained under its appropriate country, but was
randomly assigned to a button). The randomization was used to insure that there were no order
cues (e.g. alphabetical order) that would guide the user’s search process. A scenario was run
twice. On the second run of the scenario, between-item time was measured for each item
encountered in the hierarchy. These items included both the target items in the mission scenario
and the items located along the paths to reach the target items. We did not use data from the first
run of the scenario, as it would likely show strong learning effects for those items frequently
searched. The average between-item time for every item in the hierarchy was stored in a file to
be used by the optimization program.

A program that created an optimal hierarchy converted the motor time data and the between-
item data into independent motor time data and categorization time data. For the mission
scenario, the program then considered different hierarchical layouts to identify the one that
minimized predicted search time. This was a time-consuming process, requiring approximately
45 minutes for a scenario. When the optimization procedure finished, it wrote to a file the
hierarchical position of each item.

Finally,’ a testing program read in the hierarchical data generated by the optimization program,
and the user participated in two runs of the scenario. The testing program gathered data on the
second run of the scenario to measure the mean time to reach an item in the optimal hierarchy.
Figure 4a shows the expected time required to find a single item in the hierarchy for three
different mission scenarios. For each scenario, three values are plotted: the expected search

. 8

A

4.5

4

Mean 3.5
search 3

time 2.5
(seconds) 2

1.5

1

0.5

0. . .
1

Sckirio
3 Average

B

Mean

0.5

0

Alphabetical Random Optimal Optimal
(predkted) (actual)

Layout style

Figure 4. Mean search times. A shows expected search times for three scenarios and the
average. Three measures are plotted for each scenario. Random indicates that the
layout of information was randomly ordered on its appropriate page. Optimal
(predicted) is the model’s prediction of expected search time, using the layout of
information that minimizes predicted search time. Optimal (actual) is the search
time for the optimal layout as measured through user interaction. B shows averages
across three trials for alphabetical, random, and optimal layouts.

time for the random hierarchy (used to gather between-item data), the model-predicted expected
search time for the optimal hierarchy, and the actual (from user testing) expected search time for
the optimal hierarchy. , Averages across the three scenarios are also plotted.

For the random hierarchies it took approximately 4 seconds to find an item in the hierarchy.
When the items-were rearranged according to the optimization procedure, it took approximately
3 seconds to find an item. This corresponds to a 25% reduction in search time, a substantial
savings when one considers the large number of searches in an MFD.

Also noteworthy is the close correspondence between the predicted and actual performance
on the optimal hierarchy. (By its design, the model must agree perfectly with user petiormance
on the random hierarchies.) The strong agreement between the predicted and actual performance
suggests that the model of search times accurately captures many of the important characteristics
of hierarchical search.

Finally, we wanted to compare the performance on the random and optimal hierarchies to
what we suspect would be the default ordering inmany situations. We measured mean search
times for situations where the hierarchy items were ordered alphabetically on the buttons. Figure
4b shows the averages of three scenarios for the alphabetical, random, and optimal hierarchies.
The alphabetical search times are similar to the random search times, and both are substantially
larger than the optimal search time.

It is instructive to note some characteristics of the optimal layout. With the touchpad mouse
controller, it takes substantial time to initiate a movement. As a result, the optimal layout created
paths for the most frequently used items that involved repeated pressing of the same button.
Figure 5 demonstrates the path for a commonly accessed item. Those items that could not be
placed along a repeating path had paths that minimized movement time. In general, this
organization is consistent with the guidelines suggested by military standards (MIL-STD-
1472D). However, the computational method considers more. Certain buttons were more easily
accessed than other buttons and certain paths in the hierarchy were more often traversed than
other paths. It is no trivial task to decide which set of paths should be associated with which
buttons because changing the location of one item requires additional changes among the
children of that item. At the same time, one cannot identify the best location of items at the top
levels without considering the best locations of items of their children. This type of circular
dependence makes the layout choices very complicated. The computational approach is able to
weigh all these dependencies simultaneously to generate the best overall hierarchical structure.

The overall feel of searching for information was that the target item would likely be found
where the user expected it to be and would be easily accessible. We suspect that in addition to
reducing search times, such optimal hierarchies will produce fewer errors and increase overall
user satisfaction. We have not yet investigated these issues.

10

A

B

C

Figure 5. Hierarchy displays along the path to Monterrey, Mexico, for the optimized hierarchy.
The user needs to make only one movement (from Next target to N-America) and then
simply pushes the same button repeatedly to move through the hierarchy. Items that
cannot be placed in such paths (because of interference Corn other item paths) are
placed on paths that minimize movement time.

11

Examnle 2

A second study was run to insure that the methodology was general to a number of different
conditions. For this purpose, three additional users participated. None had extensive practice
working with the geographical hierarchy interface. The programs were run on a PC computer
with a standard hand-held mouse.

For subject 1, motor time estimates were based on the average of five replications for each
movement. The mission scenario was created in the same way as in Example 1. For subjects 2
and 3, motor time estimates were based on the average of three replications for each movement.
The mission scenario consisted of seven different items, with individual items assigned a unique
number of replications ranging from l-7. For these users there were 28 target searches.

Figure 6 plots the mean search times for the users. The mean search times are generally
smaller than for Example 1, probably indicating the more efficient control of the hand-held
mouse versus the touch-pad device. The effects of optimization are not as strong as in Example
1. This could be because the users were less practiced searching through the hierarchy and made
more mistakes (two participants indicated that they sometimes forgot which continent was
associated with a country). Consistent with this interpretation, user 3 seems to show strong
practice effects. If such a result were verified, it would emphasize the importance of gathering
data from experienced users (which are more likely to mimic crew persons in military aircraft).
There may also be floor effects where the advantage of repeated button pushes is not as great for
the hand-held mouse as for the touch-pad device. Despite these possible confounds, the optimal
hierarchies did result in overall shorter search times than the random hierarchies. For subject 1,
additional explorations of search times with alphabetized hierarchies found mean search times
slightly above 4 seconds.

Conclusions

We have developed a methodology to apply the theoretical framework of Francis and Rear-don
(1997) to the design of hierarchy layouts. The key insight in this methodology is to factor
between-item times into motor and categorization times. By measuring motor times separately
and subtracting them from between-item times, the method avoids many complicated issues that
would otherwise prevent accurate prediction of search times.

We developed computer &ware to explore hierarchy search and gather data for designing
optimal hierarchies. Two pilot studies demonstrate the utility of the methodology. The
hierarchies that minimized predicted search time were found to be substantially better than
random or alphabetically organized hierarchies. The results verified the benefit of optimizing
hierarchy layout and also verified the adequacy of the model at predicting search times.

12

4.5 -
4-

Mean 3.5 -
search 3-
time 2.5 -
(seconds) 2 -

1.5 -
l-

0.5 -
O-

1 2 3 Average

User

H Random

n Optimal (predicted)

Ill Optimal (actual)

Figure 6. Mean search times for users in the second pilot study. The optimized hierarchies
resulted in shorter search times than the random hierarchies.

To apply the methodology to the design of real MFDs requires gathering motor time in a real
(or accurately simulated) cockpit, accurate measures of between-item search times, and good
measures of the frequencies with which crew members use the various MFD functions. With
this data, it should be possible to optimize the layout of items on buttons and reduce search
times. However, one should consider a number of other issues before applying the optimization
approach to MFDs in cockpits. First, there may be some functions that must be reached within
specific time constraints or they are of no use to the crew (e.g., taking evasive action under fire).
The optimization method should take such constraints into account. Second, the motor time data
may vary depending on the function being searched for. For example, a pilot going through
checklist procedures before take-off may need to spend very little time on flight controls and can
quickly move through button pushes of the MFD. In contrast, a pilot taking evasive actions
under fire may need to keep his hands on flight controls as much as possible, thereby increasing
the average time needed to push buttons on the MFD. The model of search times needs to
consider that some items may be associated with conditions that necessarily slow search time.
With such considerations, the optimization method can design the hierarchy layout to
accommodate those restrictions. Third, real MFDs often place restrictions on which buttons can
be used. For example, in Figure 1 A, the entire left side of the display is covered by engine
information and is unavailable for labels linking to other pages. Such restrictions have not been
considered in the hierarchy search programs considered here. Fortunately, there is nothing in the
basic methodology to prevent consideration of these issues. Their resolution may require
additional programming and data collection, but the theoretical framework remains unchanged.

A related issue concerns user variability. Even in the pilot studies, there are notable
differences between participants’ search times (there were differences in the mission scenarios as
well). An MFD in an aircraft must accommodate a variety of users. As such proper design of
the hierarchy must gather data from a variety of users and create a distribution of motor and
categorization times. With such data, it should be possible to design the hierarchy so that it

13

optimizes performance over the distribution of users. Nothing in the methodology prevents such
design, although it will require that substantial amounts of data be gathered from a variety of
users.

The current work provides the first, to our knowledge, scientific method to optimize
hierarchical layout that considers the details of the human-computer interactions. Our analysis
and experimental results suggest that the method may have a significant impact on usability of
MFDs. Given the growing use of MEDs in both military and civilian aircraft, it is important to
insure that they are designed to allow efficient retrieval of information. Our methodology
provides a means to that end.

14

Braithwaite, M., Durnford, S., DeRoche, S., Alvarez, E., Jones, H., Higdon, A, and Estrada, A
1997. Flight simulator evaluation of a novel disnlav to minimize the risks of spatial
disorientation. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL
Report No. 97- 11.

Cook, R. and Woods, D. 1996. Adapting to new technology in the operating room. Human
Factors. 38: 593-613.

Department of Defense. 1981. Militarv standard: Human engineering design criteria for military
svstems. eauipment. and facilities. MIL-STD-1472D.

Flanagan, D. 1996. Java in a nutshell. OReilly & Asociates, Sebastopol, CA.

Francis, G. and Reardon, M. 1997. Aircraft multifunction disnlav and control svstems: A new
auantitative human factors design method for organizing functions and disnlav contents Fort
Rucker, AL: U.S. Army Aeromedical Research Laboratory. USAARL Report No. 97-l 8.

Hannen, M., and Cloud, T. 1995. A case study in the design and testing of hands-on controls:
The Longbow Apache grip development process. In: Proceedings of the American
Heliconter Societv Slst Annual Forum. 1417-1435.

Klymenko, V., Harding, T., Martin, J., Beasley, H., Rash, C. and Rabin, J. 1997. Image quality
figures of merit for contrast in CRT and flat Dane1 d&lays. Fort Rucker, AL: U.S. Army
Aeromedical Research Laboratory. USAARL Report No. 97-17.

Lee, E., and MacGregor, J. 1985. Minimizing user search time in menu retrieval systems.
Human Factors. 27: 157-l 62.

Morrison, M. (ed.) 1997. Java Unleashed: Second Edition. Sams.net Publishing, Indianapolis,
IN.

Paap, K., and Roske-Hofstrand, R. 1986. The optimal number of menu options per panel.
Human Factors. 28: 377-385.

Rash, C., and Becher, J. 1982. Analvsis of image smear in CRT disnlavs due to scan rate and
phosnhor nersistence. Fort Rucker, AL: U.S. Army Aeromedical Research Laboratory.
USAARL Report No. 83-5.

Reising, J., and Curry, D. 1987. A comparison of voice and multifunction controls: Logic
design is the key. Ergonomics. 30: 1063-1077.

Sirevaag, E., Kramer, A, Wickens, C., Reisweber, M., Strayer, D., and Grenell, J. 1993.
Assessment of pilot performance and mental workload in rotary wing aircraft. Ergonomics.
36: 1121-l 140.

15

Seppala, P. and Salvendy, G. .1985. Impact of depth of menu hierarchy on performance
effectiveness in a supervisory task Computerized flexible manufacturing system. Human
Factors. 27: 713-722.

Vandierendonck, A, Van Hoe, R., and De Soete, G. 1988. Menu search as a fin&on of menu
organization, categorization, and experience. Acta Psvcholotica. 69: 23 l-248.

16

Anuendix A. Hierarchv search comnuter software

The appendices describe the computer software used to investigate hierarchical search. All
software was written in the Java programming language (for a discussion of Java, see Flanagan,
1996; Morrison, 1997). This language was chosen because it has built-in commands for creating
windows, buttons, and handling user interfaces. Java programs also have the advantage of being
machine-independent, meaning that the programs will run on any machine platform (PC,
Macintosh, Unix), provided that platform supports a Java virtual machine.

Java is an object oriented programming language, meaning the programmer defines ckzsses
that contain attributes and methods for manipulating the attributes. One benefit of this
programming approach is that a class can inherit characteristics of another class, thereby
reducing the need to rewrite code. Figure A-l shows the relationships between the classes used
to investigate hierarchical search.

uildOptimalHierarchy

Figure A-l. The Java classes written to explore hierarchy searches. HierarchyPage
provides data structures and methods useful for working with an item in the
hierarchy. It is used by many of the other programs. DispZayHierarchy is a
class for basic windowing and interfaces with a given hierarchy and mission
scenario. The classes Practice, SearchTime, TestHierarchy, and MotorTime all
derive from this class and,add or change methods to compute different
statistics and read/write to different files. Setup provides a general scheme for
creating a hierarchy structure. Optimize modifies the general scheme to create
an optimal hierarchy. BuiZdOptimaIHierarchy provides an interface to go
through each step in the process of building a hierarchy optimized for a single
mission scenario.

17

Anpendix B. Summarv of Java classes

Thk section provides object specifications for each Java class used. For each class, the object
specification provides a brief description of the class’ purpose, the attributes associated with the
class, and the methods used by the class to can-y out calculations.

Description

Attributes

mme

c8tegorize_tlme

oum_replIcs

T@iCS

num_buttons

wm_kw&

Methods/Events

#f!@@@g

&&.&?~~~ . xv.. ..A... r.+

shing

int

till

int

int
int
int

8eSPathfmniPosition

setP8tb

A statistic of how long it takes to reach the page. Its precise definition
depends on the class that invokes the HierarchyPage.

Anarraythatdescriithequenceofbuttonpnshesneededtoreach
the page.

Thenumberoftimesthepagehasbeensuchedfor.

The number ofbuttons in the hierarchy.

Thenumberoflevelsinthehierarchy.

int

int

void

void

RetlUlUthelevelafthep0ge.

Desivesthepathofthepagefromagiven
pOSitiOlL

setsthepathOfrhepagegilKzlanaITay.

is

Description

TheD~~yclassreadsinhierarchicalo~on~madata~eandaeatesa
win&nvwithbuttonstodisplaythehkuchy. IthandlesallbuttonplkSsesandlelabe&thebuttonsto
emulatelWemcnttbroughthehierarchy. Italsoprovidesroutincsfor~gstatisticsonusE7
performence.

‘Attributes

randGen

num_buttons

num_kvels

b

sea&_for_counter

nea_tuget

level

f=d-t=get

start-time

num_triah

trial

bp-m

PW

block

num_blocks

target_indes

<. :zam<, :. :‘:““; 1 -‘.. c ., .,,,.... ,q< .& _,

:: ic.. .*js$~:;$:.:.: 5:’ ::::~~~~~~~~~~~~~~~~~~~ :.:.:.:< ,... A.. ,_ ?., . ..c.*. ..< I.. :

Random

int

int

But-0

string

BUttoll

int

boOlC?aIl

long

int

int

illt

illto

Hierarchypa,geo

int

int

int

The number of buttons in the hierarchy.

lkenumberaflevelsinthehierarctry.

Aa army of buttons. Hierarchy labels are placed on these buttons.

Thenameoftheitemtheuseristofind

Alabelthatdisplaysinf~oninthemiddlepanelofthewindow.

The Next wet button.

Identifies the current level of the hiemrchy during user search

Noteswhethertheuserhasfoundthetargetitem.

Used for gathering reaction time data.

Thetotalnumberoftkdsinamissionscenario.

llECW3ltIlUdXXOftlialSthatbavebeen~O~

Acountofhowmanybuttonpresseshavebeenmadedmingthe
cmrentsearch

Keepstxackofthe-seqtuxeofbuttonpushesgenemkdby
thellser.

rhepagesoftlxhiemrchy.

Thenumberofblocksthathavebeenrun.

l%enumberofblocksthataretobenmdmingatestingsession.

Iheimiexofthetargetitem

19

update_~tistics_no

L-&St

update_statistics_~

get
get_data_from_fk

write_to_f~

fmlmgmitwti

Getsewatem

huildDirplayPage

void

void

void

void

int

void

void

Not impl-

Reads in hierarchy and mission scenario data fi-om
the file *datakms.txt”.

Not implemented.

Iden~theindexofthehi~pagethathas
thegivenp0thofbuttoIlpushes.

!Selects the next item for the user to search for.

Relabekallbuttonstoemulatemovementthlough
thehi-y.

20

Description

The F~actice class instantiates the DisplayHierarchy class. It has no new attributes or methods.

21

Description

The Practice class inshd&s the DisplayHierarchy class. It has no new attributes or methods.

21

Description

‘ll~Motofficlassexte&stkDi@ayHiierarchyclass. Itusesthemethodsanddata-
inDisplayHierarchytoaawiadowandhienuchyinterface,however,it~~methodsto
explolemove!menttimesbetweenpairsofbuttons.

Attributes
q..,...:.. .y..
~~~;~ 

:.:.:@.@@ 

It!pliCS 

mlm_rc!plics 

button1 

button2 

found_targetl 

time 

stat 

Methods/Events 

An~tbatpravides,foreach~ofbuttons,acouatofhowoffen 
tbeuserkispeAmnedthe movementbetweenthepair. 

Themunberoftinxstbeusermustmakea movementbehveenexll 
pairofbuaons. 

Thenameofthefirstbuttoninamovementpair. 

Thenameofthesecondbuttoninamovementpair. 

Theindexdthefifstbuttoninamovementpair. 

Theindexufthesecondbuttoninamovementpair. 

!kttobuewbentheuserselec&thefirstbuttoninthemovementpair. 

AnaIIaythatprovide&forezhpairofbuttoIl%tllesumoftime 
requiredtomovebetweenthepair. 

Anarraytbatpwidesforeachpairofbuttons,thtsumofrimesquared 
requiredtomovebe4weenthepair. UsedtocalculatesQndard 
deviaGonsdmotortimes. 

action boolean Event e, 
obja arg 

Get&a&Pattern void 

get_data_from_fde void 

writctof~ void _- 

~~se$tsthenextpairofbuttonsforthe 

Setsuphierarchy,doesnotactuaUyreadf-roma 
file. 

Writegfireverypairdbuttonqtheavexage 
motortimeandtbestamkddeviation tofile 
“dat&no&r.lxt”. 

23 



Methods/Events 

opdafe_statistics_tu void 
I@ 

WI path calculatesthetimetakenbytheusertofindthe 
target item. 

f!%L*-ftrom_* void Re!adsi.ntbeoptimalhiemrchicallay~taud 
mission scenario information from the file 
“datatoptimalsxt”. 

witetofk VOid __ write§meallsearchtialedata(oIi~pfedi~ 

actual) to file “datalmeaf_time.txt”. 

24 



MetboddEvents 

gct_data_from_fde void 

creatc_new_hierarchy void 

writetof~ __ 

fmdPagewithPath 

void 

int 

void 

intopath 

int level, int 
item int 
new_item 

Reads inhierarchical infonnatio~ starting with 
the file “Item_xmxnedlevelO.txt”. Then reads in 
otherflleswithnamesmatchiugtheitemnames. 

Randomizesthehiesarchylayoutanddeflnesa 
missionscenario. 

Writes the hierarchical layout and mission 
scenario infommtion to the file “dasalitems.lxt”. 

Idenlifi~theindexofthehiefafchypagethathas 
thegivenpathofbuttonpushes. 

Swaps the paths ofpages item and new-item. 
Alsochangestheplathsofthechildrenofthese 
itemstokepthehieranhicalonlerintact. 

25 



Description 

TheOpthizeclasscxtendstheSetupclass. Itreadsfromfilesbetween-itemtimedataandmotor 
timedata ItcalaMescategorizationtimedataanddefinesamodelofsearchtimes. Itthenusesan . . . optrrmPlsronteclmiquetoGndahierarchicallayoutthatminimks predictedsearchtime. Theoptimal 
hkalChy(alongWithitsmission scenarioandp8edictedsearchtime)iswrittentoaGle. 

Attributes 

Methods/Events 

get_data_from_fh 

CWtC_EClV_hiCIW 

C-b 

laCal_minima_ChCC 

k 

witctofile __ 

mrp 

netimeneededtomovehetweeneadlpairofbuttons. 

Thetimeneededtogothroughthemission ScenaIio with the original layout. 

Tbetime~fogothroughthemissionscenariowithtbeo~~hyout. 
Using class computations Usefbl for comparing to ast to detect bugs. 

ThepEdktedsearchtimefortbealHeothierarchicallayout. 

TbepredictedseaEhtimefortltellesthierardlicallayoutyetfolmdbythe 
aptbbtiollroutine. 

void 

booleau 

int 

VOid 

void iIltlevel,iIlt 
item, int 
new-item 

Readsinhierarchi~missionscenario,andhetween- 
item time data fkom file “data/search time.txt”. Creates 
hierarchy pages. Also reads in motoFtime datatim 
file “datafmotor.txt~. 

Computescategorizationtimeaadston3sitinhiemzhy 
pages. usesancqtim&ionptoccduretofindthehier- 
archicallayoutthat minimksp&ictedsearchtime. 

Retmnsbueifthecurnmthiemrchylayoutisalocal 
minimaofpredictedsearchtime. 

Retumsthepredictedtime(iumilliseconds)fortheuser 
tosc!archthroughthemissionscenariowiththecurreIlt 
hielaEhylayouL 

Writrsthehkarchicallayoutandmissionscukwio 
infbrmation to the file l data/optimal.txt”. 

Swapsthepatbsofpagesitemandnew_item. Also 
changesthepathsofthechildrenoftheseitemstokeq 
thehierarchicalo~in~ 

26 



. 

Description 

T&~erarchyclasspmvidesaninte~togu.ideauser~ghthCdmof 
gatkingall~daraand~~~hibiaarcby. ItcausexhclassaslK!&d. 

Attributes 

I b I 

Methods/Events 

27 



ApDendix C. Java source code 

This section provides the source code of each Java class. 

r class HiiyPage 

Written by Greg Franc&, Purdue University 
August 1997 

The views opinions, and/or findings contained in thii report are those of the author 
and should not be construed as an oftkial Department of the Army posttion, or decision, 
unless so designated by other documentation. 

olaes HisrwchyPage 
( 

M num_levefs, nun-buttons; 
Strtng name; 
kM categortze_ttme; 
M reptics, num~reptii; 
int path0 = new rnt [num_fevels]; 

HiirchyPage(iit num_levets, int num_buttons, String name, int categortze_time, 
int replics, int num_reptics) 

( 
tMs.num_tevets = num_tevets; 
thts.num_buttons = num_buttons; 
thisname = name; 
this.categorhe_time = categotize_ttme; 
Urisreptics = rep&s; 
this.num_repks = num_reptics; 

1 

// returns the position that corresponds to the page’s path 
int getPositton() 
( 

w po&ton=O; 
int temp_position=O, sum=O; 
for(ii i=O;i<num_levets;i++) 
( 

terw~on = temp_poeMrVnum_buttons + path[il; 
swn += Cnt)Math.pow((dou#e)um_kdtons,(dw#cXi)); 

1 
I - 
position = temp_position+sum; 
return positkm; 

1 

//retumsthetevetofthepage 
int getLevel 
( 

tnt levels-1 ; 
for(int i=O;icnum_lev&;i++) 
( 

am==-1) 

28 



kum level; 
) 

II computes the page’s path for the given index 
//this method must be explicitly catlsd 
void setPathfromPositiint position) 
( 

It se4 defautt 
for(ii i=O;knum_lsvels;i++) 

patw=-1; 
int ske[l= nsw int (num_ievels]; 
int lavel=O,sum=O; 

//compute range of indices for each leval 
tbr(int i= O;~num_levsls;i++) 
( 

sizem = (int)Math.pow((doubk)num_buttons,(double)ii; 
sum += size[i]; 
if(position < sum) 
( 

level = i; 
i=num_levets; 

) 

/I wak backwards through levels to WI path 
for(int i=leve@-O;i-) 
1 

/I find position in level i 
int tsmp_positiin = position - (sum-size[il); 
pat~il] = ~~t)@rnp_poMon%num_buttons); 
/I reset index as parent index 
SumtO; 
for(iti j=O;j+l;j++) 

sum+=stz~~; 
posttion = sum + (i)(tsmp_pasitionlnum_buttons); 

) 
I 

II this mathod sets the path by copying an array 
void setPath(iia tamp) 
( 

for(int i=0;knum_levels;i++) 
patw = tsmpm; 

) 

29 



P class DisplayHierarchy 

lhisc&sss&supadiiaysaeen withb&onsandthenspetSestargekfor 
theutokdinthehierarchicy. DaEsonthekmrchyisrsadinfromthefile 
“dataMms.bd-. No output file is created. 

Written by Greg Francis, Purdue University 
August 1997 

public class DisplayHierarchy extends Frame 
( 

Random randGen = new Randon@; 
int num_bt&tons, num_leveJs; 
int nun-labels; 
B&ton w; 
string target; 
Label seati_for,counter; 
Button next-target; 
int IeveCO; 
boolean found_tsrget=true; 
bng ata$-; 
int fwn_tnals=O, trial =o; 
lnt bp_-; 
~ntopath; 
-yPagepagell; 
intblockq 
int num_blocks=l; 
inttarge_index; 

public Di#ayHiirwchy(String title) 
( 

supar(titk); 

//sst size of Sear&Time window 
this.resize(600,400); 

ii set font 
Font font = new Font(-Helvetica”,Font.PLAlN,24); 
setFont( 
l/Create menubsr 
Mewearmenubar= new MenuBafo; 
this.saMemJBar(menubar); 
//Create file menu. Add Close. 
Menu tilewew MenuCFile”); 
lile.add(new MenultenqTlose~); 
menubar.add(file); 

RandomrandGen=newRandon@; 

gwJakfrom_w)~ 

/I defii range of path variable for later use 
path = new M [num_levels]; 

30 



b=new B&ton@um_buttone]; 
for(int i=O;iwim_buttons$++) 

b(ij=newButt~ 

//Establii panels for buttons and info 
Panel left = new Panel& 
Paneldght=newPane@; 

3; 

Ieft.eetL3yout(new GrtdLayout(num_buttoneL2,1 ,lO.ZO)); 
for(int i=O; iwum_buttonsQ;i++) 

right.eetLayout(new GriiLeyout(num_buttone/2,1 ,10,20)); 
for(int i=num_buttons/2; i~num_buttons;i++) 

rWt.add@m); 

this.eetLayout(new BorderLayout(B,B)); 
thiS.add(Veet=,left); 
this.add(-East”.rQht); 

// Set up everything etse on b&tom panel 
Panel bottom= new Pane@; 
bottom.eetLayout@ew GridLeywt(%l ,lO,zo)); 
search-for = new Label CPreee b&ton to start “); 
Panel next = new Pane@; 
next.setLayout(new FlowLayout(FlowLayout.CENTER)); 
n&target = new Button(“Next target”); 
nextadd(next_target); 
counter = new Label C+(num_trials)); 
b&tom.add(next); 
bottom.2+dd(counter); 
this.add(“Centef-,searct_for); 
thie.add(%outh”,bottom); 
thiwecko; 
thie.showO; 

public m void main(String args0) 
( 

DispleyHierarchy f = new DiiyHierarchy(“Hiererch~; 

P Thie method handles all user interactions with the hierarchy. 
It changes button labels according to movement through the hierarchy. 
It notes when the target has been found. 
It calls methode for meaeuring verioue response times. 7 

public booIean action ( Event e, Object arg) 
( 

if(e.target inetenceof Menultem) 
( /hVetch for qua command 

String iabel= (String) arg; 
if(label.equale(-cioee-)) 

dispose0; 
1 

if(e.target instenceof Button) 
( 

String s= (Striig)arg; 

if (e.terget = next-target && found-target) 
( 

if ( trial < num_trtals) 
( 

GetSeerchltemO; UGetnewtarget 
found_terget=felse; 

] 
else II see if another Mock is needed 
( 

block++; 

31 



if(bWc==num_btocke) 
( 

search_for.setText(‘Al done...Thanks!“); 
wite_to_fiteO; 

) 
else tf(bbc& cnum_bbcks) /I reset everythii for the next block 
1 

search~_for.setText(-Next block..“); 
for(int t=O;knum_iabets;i++) 
( 

page(ipepiice = 0; 
page(ipategorize_time=O; 

) 
trial =o; 
found_target=true; 

) 
] 

I 

fl( I-wwtaw~D 
1 

IM not target, act on pushed button to move through hierarchy 
for(int i =O;i+wm_bultons;i++) 
if(e.target == b(iD 
I: 

path@p_count] = i; 

update_etatii_not_target(path); 

/I Relabel b&tons to emulate moving through the hierarchy 
bp_=mt++; 
// If go through b&tom of hierarchy, reset to top page 
if(bp_count-num_leveie-1) 
( 

bp_count+o; 
fcr(int i=o;~num_ievelsp+) 

pethjj-j=-1; 
] 

buildDisplayPage(path, bp_count, b); 

return true; 
) 

) 
I/ If target, record between-item time and prepare for next item 
else if(!found_target) // ignore repeated pressings of target button 
( 

for(int i =O;i<num_buttons;i++) 
if(e.target == b(i)) 
( 

found_target=lNe; 
path(bp_count] = i; 
update_etatii_target(path); 
bp_-mt++; 
if(bp_count=num_levele) 
( 

bp_-mt=Q 
for(int j=O;j~num_levels;~++) 

pdhjjl=-1; 
] 

] 
search_for.setText(“Press ‘Next target’“); 

) 

) 
return true; 

) 

32 



// does not rssult in the target being found 
public void update_st&iat@no_target(intjl path) 
( 

] 
//This method updates statistics for a button press that 
//resuttsinthstargstbeingfound. 
public void updae_sMstii_tsrget(ics_tarset(inM path) 
( 

//ThismsthodreadsdatafromtheinputNe 
public vdd gst_data_from_tile() 
i 

1” 
Sring filename = “dataMems.W; 
Fii f = nsw File(tWnams); 
FiilnpWtream labels = new FilslnputStrsamQ; 
DatalnputStrsam label_file = new DatalnputStream(labels)ds); 

/I Get num_levels and num_buttons 
String s = bbe_Rle.rsadLine0; 
//parse out neaded info 
II get numJsvels 
int and = s.mdaxGf~,“); 
String temp = s.substdng(O,end); 
num_levets = (int) Float.valueDf(temp).ftValus(); 

I/ gst num_buttons 
temp = s.substring(end+l); 
num_buttons = (int) Float.valusGf(temp).floatValue(); 

// Compute number of labels in Hierarchy for later uss 
for(int i=O;i<num_lsvels;i++) 

num_labels += (int)Math.pow((double)num_buttons,(double)i); 

Ii Create pages 
page = naw HiirarchyPage[num_labsls]; 

I/ get pags info from data fits 
for(int i=O;i<num_labels;i++) 
( 

s = labet_fils.readLine(); 

//parse needed information 
//getnams 
int name-end = s.indexDfC,“); 
String name = s.sub&ing(0,name_end); 
//get posit&l 
int position-end = s.indexGf(“,“,name_end+l); 
String s2 = s.subWng(nama_end+l ,posihon_and); 
tnt position = (ii) Ftoat.valueGf(s2).floatValua(); 
I/ gst tima (atways aquals 0) 
int tims_snd = s.indexGf(“,‘,poskion_end+2); 
String s3 = s.substMg(positii_end+2,tii_end); 
W time = (ii) Ftoat.valusDf(s3).ftoatValus(); 

ligst replications 
int reps-end = s.lastlndsxOf~,~; 
s2 = s.substring(reps_end+l); 
int reps = (lnt) FlostvalueGf(s2).floatValueO; 

num_trtals += reps; /I keep track of how many trials there will b-s 

I/ sst up page info 
page[g = nsw HierarchyPage( num_tsvels, num_buttons, name, time, 

0, reps); 
page[i).sstPathfrornPosltion(position); 

33 



1 
1 
=Wme) 
1 

Sy&em.c?ut.prWn(“Erroc ‘+e.toWngo); 
) 

//Thismethodwriteadatatotheoutputfile 
pubtic void Wte_to_tUeO 
( 

/I This method identifies the index of the page that haa the specified path 
/I of button presses. 
public int findPagewithPath(iO path) 
( 

int item=1 ; 

for(int i=O;iwum_labels;i++) 
( 

boolean found_it= tnia; 
W m = new int [num_lavels]; 
check = pagawath; 
for@ j=O$num_levelsJ++) 
( 

w=wl != PmiD 
f 

found_it=fake; 
) 

) 
if(faund_it) 
1 

item=i; 
i=num_labek; 

) 
) 
ratum item; 

IlThismethodgetsthene~targetitemfortheusertosearchfor. ltconsklers 
// how otten each item ia to be searched. 

public void GatSearchRem() 
( 

I/ pick an item at random, but not item zero 
int item = (ii)(Math.abs(randG.nextlnt())%(num_labe~l))+1; 

/I make certain the item ia to be searched for 
while(page[item].replics >= page~em].num_repiics) 

item = (int)@4ath.abs(randGen.nextlnt())%(nwr_iabeis-l))+1; 

page(item].r*W+; 

y$ ya&Ntememname; 
_I = ; 

I/ get buttowpresses and level for selected page 
int temH = naw int [num_levets]; 
temp = paga#em].path; 
level = page~em].getLevel(); 

//Ifcity,kteMifycountrytoeaseseardl 
Stttng *-; 
if(iew==2)( 

I/ tlnd page that corresponds to parent 
int parantJthfl = new int [num_levels]; 

34 



for(M i=O;icnum_leveW++) 
parentJsth(ij = temfiil; 

parent#level] = -1; 

int parent-index = findPagewithPath(parenQath); 
s = -, ‘+page(parent_index].name; 

) 

bid++; 
aearch_for.satText(targ&+s); 
counter.setText(“‘+(num_trials-trial)); 

for(int i=O;Wum_levels;i++) 

bp,count=Oo; 
krtldDisplayPage@ath,bp_count,b); 
Date now = new DateO; 
start-time = now.getTime(); II start dock for first pair of button presses 

//This method buii the display for the appropriate level and path taken 
I/ by the user es he moves through the hierarchy 

void buikJDiaplayPage(int 0 path, int level, Button0 b) 
( 

int [I temp = new int [num_levels]; 

for(int i=O;i<num_levels;i++) //copy path to dummy array 
tenHI= pathI% 

II find label for each button 
for(int k=O;kulum_buttons;k++) 
( 

tempIlevel] = k; 
b[k].setlsbeypage(findPagewithPath(temp)].na~); 

) 

35 



import DisplayHkrarchy; 

ThisdassssCBupadjOplayscreanwithbr#~andthenspedfiestwgeEsfor 
ths user to find in the hierarchicy. Ths hierarchical information is read in from 
ths tik “dat&ii.~. It does not prodwe any outpclt files. 

Wryten by Greg Francis. Purdue Unktsity 
August 1997 

The views opinions, and& findings contained in this report are thoss of the author 
and should not bs construad as an official Department of the Army position, or decision, 
unless so designated by other documentation. 

‘I 

public class Pradice axtends DiiyHierarchy 
I 

public static void main(Sbing args0) 
( 

Satup stp = naw Setup& I/ Create mission scenario 
Practka f = nsw Practice(“Practii”); 

I 
1 

36 



import java.awL’; 
$olt$~.ub-&RR; 

. . I 
impott java.io.‘; 
import DwaYHknrchy; 

PcbssSeatchTime 

Thisdass&supadiqlayscrwnwithbuttonsandthensipeMestarg&sfor 
theusertotindinthehieralwcy. ThetimebetweeneachpairofblMonpressee 
@ween4emtime)isnotedandcodedbythelabelofthesacandbutton. 
Average betw8eMem times we stored in the tile “dataMaM_time.btt”. 

Written by Greg Francis, Purdue University 
August 1997 

The views oplnione, andlor tindings contained in thii report are tho6e of the author 
andshouktnotbeconstwd as an official Department of the Army position, or decision, 
unless so designated by other dooun~@tion. 

publk olaae SearchTime extends Diaplaykkrarohy 
{ 

~rlww 
lnt &st_replks; 
int fKst_tima; 

public SearchTime(String title) 
( 

-title); 
) 

pubik static void main(String args0) 
( 

Setup stp = new setup(_); I/ oreate mission scenario 
SewchTii f = new Searchli~Get between item time.); 

) 

/I This method updates the statistics needed when there is a button press that 
//does not result in the target being found 
//OvetMesthemethodinsuper 
public void update_statistii_not_b3rget(intU path) 
( 

/I verify that we are on the right path. Do not gather data for mistakes 
bOohXUletlOr=false; 
for(int i=O;*=bp_count++) 
I 

wPm~~la~~_~n.~~m 

) 
if(leflor) 
( 

int hdex = nndPagewithPath(path); 
if@ldex I= -1) I/ catch bug 
( 

Date now = new Date(); 
II calculate betweeMem time 
page[index].c&gor&e_tii += (it)((long)now.getTime() - (long) start-time); 
start_time = (long)now.get-rIme(); 
if(bIoc&c~cksl) Ilkeeptrackofe ncountcrsonlast#ock 

System.out.println&g~index].name+” ‘+page~ndex&ategorize_tirhe_time+’ “+replic@dexl); 

//updateestimwsfortiMimeencountsrswithanitem 

37 



lf@bck==o88repGcgll=l) 
{ 

flrs_tlme += page@wh].categorlze_tlme; 
fks_repkcs++; 

) 
I 

I 
I 

//Thismethodu@atesstatisticsforabuttonpreasthat 
//reaukstnthetargetbeingfound. 
//Oventdeamethcdinauper 
pubkc void ~_statis-_target(ii path) 
( 

Date now = new Dateo; 
intindex=twPagswkhPath(path); 
if(ii I= -1) 
( 

~i].categortze_time += (iit)((kwtg)now.getTii() - (long) start-time); 
start-time = (long)now.getTime(); 
lf(block == num_blocks-1) // keep track of encounters on last block 

repli@index]++; 

System.out.pdntln(page(ii].name+~ “+page@xiex].categort2e_time+” ‘+repliindex]); 
II update estimates for tirst encounters with an item 
lf@ock==O 88 replic@mdex]==i) 
( 

firat_time += page(index].categcrize_time; 
first_feplics*+; 

) 

//Thiamethodreadsdatafromtheinputfite 
// Overrides method in super 
public void get_data_from_file() 
( 

num_blocks = 2; /I overrkles defautt in super 

string ftlename = ‘daWitems.W; 
Fii f = new Filegilename); 
FiilnputStream labels = new FilelnputStream(f); 
DatalnputStream label-file = new DatalnputStream(labels)s); 

// Gat num_levels and nun-buttons 
String s = label_file.readLine(); 
//parse orrt needed info 
I/ get num levels 
int end = CiiexOf(“,~; 
Sfrtng temp = s.subahing(O,end); 
num_levels = (ktt) Float.valueOf(temp).floatValue(); 

I/ get num_buttons 
temp = s.subatring(end+l); 
num_buttons = (int) Float.valueOf(temp).floatValue(); 

/I Compute number of labels in Hiararchy for later use 
fcr(int i=O;iwum_levels;i++) 

num_labels += (int)Math.pow((d~m_buttons.(double)~; 

/I Create pages 
page = new HiiyPage[num_labela]; 
reptics = new ird[num_labels]; // a counter for how often each page is encountered 

//get page info from data file 
for(int i=O;icnum_labels;i++) 
( 

s = label_tile.readLine(); 

38 



//parse needed informatfon 
Ilgatname 
w namc_end = s.tndaxOf(-,“); 
Strtng nama = s.~0,nan?t_and); 
i/g& poakian 
tnt posibon_end = s.indexOf(“,“,nanv_end+1); 
Strtng s2 = s.wbstring(name_and+1 ,posttion_end); 
int posibon = (it) Ftoat_vatueOf(s2).fioatValue(); 
/I get time (atways equats 0) 
int tirrn_end = s.tndexOf(“,“,position_end+2); 
Stdng SS = s.aubsking(pasitii_end+2,tiie_end); 
int time = (iit) Ftoat.valueOf(s3).floatVaiua(); 

l&et repttcations 
int reps-end = s.tasttndexOf(“,~; 
82 = s.subatrtng(reps_end+l); 
int repa = (int) Fioat.valueOf(s2).fioatVatue(); 

num_triata += reps; // keep track of how many trtala there wilt be 

I/ sat up page info 
paHog Lo= HiirarchyPage( num_levets, num_buttons, name, time, 

page(ij.setP&hfromPosRion(poaiin); 
) 

) 

1 
Syatem.out.printtrqTrrorz “+e.toSbing()); 

) 

//Thismethodwrttesdatatotheoutputfila 
/I Overrkfes method in super 
public void wtte_to_fite() 
( 

II Open output file 

7 
FttOutputStream ou_Be; 
ou_frte = new FiiutputStream(“data/search_time.brt”); 
PrintStream out2 = new PrintStream(ou_tiie); 

//Write info to data file 
StringBuffer abl = new StrtngBuffer(num_levaia+“, “+num_buttons); 
!$wi~:nY&=fngO); 

System.&prtnti;r(tirst time+* ‘+Bst_repttcs); 
for(int t=O;icnum_tab&;i++) 
( 

current_est += page[il.categoriZe_time; 
if(reptii=q 
( 

repiicsfi) = tirst_repiics; 
page(@atagorize_time = first-time; 

) 
SbingBuffer ab = new StrtngBuffer(page[~.nameame+‘, ‘+page[ij.getPosition()+ 

“, “+(int)((doubte)page(i&categorize_time/(doub(e)reptii+“, “+ 
pageg&num_reptii); 

out2.prirttin(sb.to-Stringo); 
) 
StringBuffer ab3 = new StringBuffer(“lc&al search tkne = ‘+current_est); 
out2.prkltin(abS.toStringo); 

Lh(Exocptione) 
( 

Syatem.out.printi~Error. ‘+e.toString()); 
) 

) 

39 



Import java.awt.‘; 
import java.util.Random; 

P olass MotorTll 

This class s&s up a diiy screen with buttons and then spe&ies movements for 
the ussr. The time to complete each movement is noted. The rewtting data is stored 
in the fils l dataImotor.txr. 

Written by Dreg Francis, Purdue Uniwsity 
August 1997 

The vlsws opinions, andhrtlndings oothlned In thii report are those ofthe author 
andshouktnotbecor&usd as an offi&l Department of the Army position. or decision, 
unless so designated by other documentation. 

public olass MnkwTii extends DtapIayHierarchy 
I 

String targetl , target2=“Next target”; 
int button1 button2 
boolean foUnd_ta~etl =true; 
int repiic@j[; 
int timem; 
int &am; 
int num_replii; 

public MotorTii(Btring title) 
1 

super(title); 

publlo statk void main(Strlng arm { 
Frame f = new MotarTime(“Motor time data”); 

) 

//This method handles all user interactions with the button presses. 
I/ It notes the tine to make the first button press, the second button press, and 
Ii it stores the difference in an array for statistics. 
public boolsan action ( Event e, Objsct arg) 
1 

Btring Sq 
if(e.twget in&weaf B&ton) 

s = (sbirg) arg; 

if( s.equ&(tqatl) 88 wound_targetl) 
( //ntksttargetisselected 

D&enow=newDate(); 
stiM_time = (long)now.gstlime(); II note time 
found_targetl =true; 
rstum true; 

) 

if( s.equals(twgeJ2) 88 found_targetl) 
(//lffaundse4xndtargetaRertindingtiIst 

Date now = new Date(); 

40 



lf(triab0) 
( l/b&& not for ftrst preee of “Next Terg# button 

// Save search time in sway for later etatistkxl computation 
timetbuttonlHbuttW += O~X&wt)Mm.aetrWeO - (Iona) start_time); 
etat(buttonl][brrtton2] += ent)Math.pow((doubleX(iong)now.get~rn~ - 

(ions) f-umu); //to calculate variance 
] 

/iwhenaudonewiteetetiit0file 
if(tliSil == num_trials) 

mite_to_file(); 

if (trial < num_biats) 
GesearchPattem(); l/Get new movement pattern 

etse 
eearch_for.eetText(‘“Ail done...Thanke!“); 

found_targetl =f&e; 

if(e.target instanceof MenuitemX /MM& for cloee command 
String label = (String) arg; 
if(lebel.equals(-clo))d~~; 

) 
return false; 

] 

// Thie methods eete up everything. It takes ite name from the wper, where information 
// is read in from a file. There is no file-input here. 
public void get_deta_from_flle(l 
( 

num_buttons 18; 
num_levels =l ; 

// Compute number of labels in heiichy for later use 
for(int i=O;i<=num_levels;i++) 

num_lebels += (int)Math.pow((double)num_buttons,(double)i); 

// create variables for statiil calculations 
replics = new int [num_buttons+l][num_buttons+l]; 
time = new int [num_buttons+l]Inum_buttons+l]; 
etat = new int [num_buttons+l~num_buttons+l]; 
num_replice=3; 
trial= 0; 
num_tfiale=num_replii*(num_buttons+1 )‘(num_buttons); 

// Do not need movemente ending in ‘Next Target”, so fitl repiii counter for 
l/those lnovemente 
for@ k=O;kcnum_buttons+l;k++) 

replk+k][num_buttone] = num_replice; 
] 

// This method writes etatii on motor time to a file 
public void wite_to_fileO 
( 

//openoutputfile 

FiiputStream out-file; 
out_file = new FileOutputStreem(“data/motor.txt”); 
PrintSlreem out2 = new PrintStreem(out_tile); 

for(int i=O;iw~411_buttone+l ;i++) 
for(ii j=O;i(num_buttone+l j”) 
( 

double average = 0.0; 
double st_dev = 0.0; 

/I go through every pair of button Pushes 

41 



II Cakdate averaae 

II Cakdate etendard deviation 
tf(num_re+-l) 

et_dev = Meth.eqrt(((dcuble~ - 
(~)n~h.~(a~,2)~(~)(n~_r~l)); 

/I Wrke to 8le the page index, average, standard deviation 
StringBuffer eb!5 = new StMgBuffer(i+” “+j+’ ‘+average+” ” 

+st_dev); 
/I Open output file 

~println(~.toshin90); 
I 

1 
catch(Exception ex) 
1 

Syetem.ou&pdnHn(“Etro~ ‘+ex.toSbingo); 
1 

//ThismethodktenMesapairofbuttonpushesfortheusertomake 
//it takes into eccount how many times each pair must be performed 
pubcic void GetSearchPattem 0 
( 

//G&MVpaif 
button1 = (i)(Math.abs(randGen.nextint())%(num_buttone+l)); 
button2 = (ii)(h4ath.abe(randGenen.nextlnt())%(num_buttons+l)); 

;““‘- repbcs[brrttonl~button2)=num_replks) 

b&ton1 = (ii)(h#eth.abe(randGen .nextlnt0)%(num_buttone+l)); 
button2 = (int~~.a~~n.~~i~)~num_krt+l)); 

) 

repii@b&onl~button2utton21++; // Update replication count for selected pair 
trial++; /I Update triel counter 

//specifytergets 
if(blltton1 = num_buttons) /I button 8 is “Next targer 

target1 = ‘Next terger; 
else 

tafgetl= -+button1; 

if(button2 = num_buttons) 

else- = “Next terger; 
terget2 = -+button2; 

//put labels on buttons 

seafch_for.eetText(targetl +” * “+tatget2); 
counter.eetText(““+(num_trialstrial)); 

1 
1 

42 



Import java.utll.Date; 
hport java.b.‘; 
import DisplayHierarchy; 

This class reads in hierarchy data from “data/o@imal.~ and creates a display with buttons 
toallowtheuserto8erachforitemsinthemissionsr3nario. Thetotalsearchtime 
is comp&d and the mean search time is written to the file “dMmean_time.~. 

WrRten by Greg Francis, Purdue Uniwsity 
August 1997 

The views opinions, and/or findings contained in thii report are those of the author 
and should not be oonstrued as an official Department of the Army position, or decision, 
unless so designated by other documentation. 

public class TestHierarchy extends DisplayHierarchy 
( 

int original_est; 
lntesk 

pubiic TestHierarchy(string title) 
( 

super(title); 
] 

public static void mainptrtng args0) 
( 

TestHiirchy f = new TestHierarchy(Xet between item times; 
] 

IIThismethodupdatesthe~~neededwhenthereisabrRtonpregsthat 
/I daes not resu# in the target being found 
I/O-themethodinSUpZ?r 
public void update_ -_no_tawtMl path) 
( 

//Thismethodtpdatesstati&sforabuttonpressthat 
//res&sinthetargetbeingfound. 
I/ Overrtdes method in super 
rblic void update_statistii_target(i~ path) 

Date now = new Date(); 
intindex=fklPagewithPath@ath); 
if(ii I= -1) 

page&dex].categ&e_time += (lnt)((long)now.getTii() - (long) start_time); 
) 

//Thismethodrfsdsd&afromtheinprrtfile 
/I Overrkk method in super 
putsic void get_data_from_fileo 
( 

num_bloclcs = 2; I/ overrides default in super 

String filename = ‘daWoptimal.txC 
File f = new File(tkname); 
Filelnp&Stream labels = new Fiilnp~StreamQ; 

43 



DatalnputStraam labal_ftte = new DatalnputStraam(labals); 

II Gat num_levets and num_brAtons 
String s = label_fik.readUna(); 

/lpprwoutiMa 
II gat num_lavela 
M and = t.tndaxDf~,~; 
strtng tamp = r.substrtng(0,and); 
num_lev* = (ii) Fbat.valuaDf(tamp).floatVaiua(); 

N get num_bUtons 
tamp = s.subatrtng(and+l); 
num_buttons = (int) Float.valuaDf(temp).floatValue(); 

II Compute numbar of lab& in Hierarchy for later usa 
fnr(int i=O;i+um_levats;l++) 

nUm_lab& += Clnt)Math.pow((douMe)num_brAtons,(double; 

II Create pagas 
page = new HiiyPage(num_labals]; 
path = naw irrt [num_kvels]; 
//gatpagainfofromdatafila 
for(int i=O~inum_labels;i++) 
I 

8 = tabel_fila.readLine(); 
//parse naadad information 
IIgatname 
int name-end = s.indexDf~,“); 
Strtng name = s.subabing(0,name_and); 
llgetpaskion 
int postlkm_end = s.indaxOf~,“,name_and+l); 
String s2 = s.subabing(name_end+l ,position_end); 
lnt position = (it) FloatvalueOf(s2).floatValua(); 
Ilgattime 
int tima_and = s.indaxDf~,“.p2); 
Strtng s3 = s.subabing@sitkm_end+2,tii_and); 
lnt time = (it) Float.valueDf(s3).floatValua(); 
I/get replications 
int reps-end = a.lastlndexDf(“.~; 
a2 = s.subatring(reps_end+l ); 
int reps = (ii) Fbat.valueDf(s2).floatValue(); 

num_trtala += raps; // keep track of how many trials 

II sat up page info 
pag@i) = naw HiirarchyPage( num_levels, num_buttons, name, time, 

0, reps); 
page#j.satPathfromPo&ion(position); 

) 

!I Cat original search time for random hierarchy 
s = labal_fila.raadLir@; 
end = s.laatlndexDf(” “); 
tamp = s.substnng(end+l); 
original_ast = (ii) FlnatvalueDf(tamp).ttoatValue(); 

/I Get pradicted search time for optimal hierarchy 
8 = labal_fik.readLine(); 
end = s.laatlndexOf(” “); 
temp = s.subatring(end+l); 
est = (ii) Fbat.valuaDf(temp).floatValua(); 

) 
catch(Exception e) 
( 

Systam.out.prtnttn(Trror~ “+e.toStringo); 
) 

) 

//TMsmathadwrttasdatatothaoutputtIa 

44 



//overrtdesmethodins4lper 
public void wtite_to_tIe() 
( 

N Open ouQA fik 

7 
FUeOutpMStream ou_fde; 
ou_Ne = new FikO&putStream(mean_tii.btt”); 
PrintStreem out2 = new PrintStream(cut_tik); 

//Write info to data file 
// add up actual search times, gathered with thk program 
intac&el e&=0; 
for(int i=&num_kbek;i++) 

actual_est += page[il.categofize_tii; 

StringBuffer sb3 = new StringBuffef’ln wcondsMem - Original search time = “+ 
((doubk)(otiginel_esUnum triak)/lCKKI)+ 
“Mxpected search time =~+((doubk)(eet/num_trkk)/l OOO)+ 
WI search time = ‘+((doubk)(ectual_eet/num_trkk~l lXt0)); 

out2.prtMn(sb3.toSbingo); 
) 
cetch(Exeption e) 
( 

System.out.println(Yrwrz ‘*e.toString()); 
I 

45 



import java.til.Random; 
import java.&Date; 
import javaJo.*; 

P&SSSetllp 

Thischlss~inuser-biupplieddaEafJssthatdefincahierarchicalstrudue. 
ltrwwdersthehka&kal&ucture,definesamisaionscerwio. and mites 
all the Mormation to the file ‘data&ms.~. 

Written by Greg Francis, Purdue University 
August 1997 

The~opinions,andlorfkdi~containedinthisreportarethoseoftheauUIor 
andsho&inatbacor&ued asanoffkialDepartmentoftheArmypos&ion,ordecision, 
unless so dasignated by other documentation. 

‘I 

public class Setup 
i 

int num_buttons, num_levets; 
M num_tabe& 

get_data_from_fil@; 

cmate_new_hierarchy(); 
I 

public static void main(String arss0) 
( 

Setupf=newSetupo; 
1 

~ThismethodreadsindatafromspecitIedtIles. Namesofitemsinthetlrstlevelare 
in a file called ‘ltem_namesAevelO.~. The names of items in the s&sequent levels are 
in files with filenames ‘ltem_nameskitem_name~.bC, where <item-name> is given 
in the level0.t.M file. l / 
public void get_data_from_Ele() 
( 

// Get info from category data files 

Stltngtuename = ‘Item_namewlevelO.bC; 
File f = new File(filename); 
FilelnputStream labels = new Flklnp&tream(f); 
D&alnp&kefam label_* = tww DatalnputStream(labels); 

/I Ge4 num_kvela and num_buttons 
String s = label_file.readLineQ; 

//parse ocrt info 

//get IlumJevek 
kit end = s.mdexDf(-,-); 
String temp = s.substring(O,end); 
num_levels = (int) Float.valueDf(temp).fbatValua(); 
Ii get num_buttons 
temp = s.subatring(end*l); 
num_buttona = (int) Float.valuaDf(temp).floatValue(); 



//CernputenumbercflabetsinHieramhyforlateruse 
for(int i=O;Wrum_levels;i++) 

num_labels += (int)Math.pow((double)num_buttons,(doubie)i); 

II Create pages 
page = new HiichyPage[num_labets]; 

for(mt l=O;Wnrrn_labe&i++) 
( 

pa(le(il = nsw HiirarchyPage( num_levels. num_buttons. -, 0, 0, 0); 
pagejg.setPathfromPcsltion(O); 

) 

// Losd in item names and position in Hierarchy, first level only 
System.out.pdntln(“Loading names from file.“); 
for(int j=l;j~~m_buttons+l ;i++) 
( 

8 = label_file.readLine(); 
//setpaths 
int jj path = new intjnum_levels]; 
pa&patJ;w.““; 

0 ; 

pag@wme = s.trim(); 
1 

’ System.out.prfntln(“Erro~ “+e.toStrtnggO); 
) 

I/ Now load in other items using name from parent as filename 
forgnt item=1 ~iem~num_labeis;item++) //cycle through all pages, except top, whiih is nothing 
( 

int level= pagejttem].getLevel(); 

if(level c num_levelsZ i%& level I= -1) // set children of parent 
( 

// get path for parent page 
intjj temp = new intjnum_levels]; 
temp = pagejitemjpath; 

Strtng s = pagejttem].name; 
if(s.length()4) /I do not look for file if filename is blank 
I 

FilelnputStream labels = new FilelnputStream(“ltem_names/“+s+”.txt”); 
DatalnputStream label_gle = new DatalnputStream(labels); 
for(int j=O;j<num_buttonsJ++) 
( 

Strtng sl =label_file.readtine()+‘Y 

if(sls~~ tst .cqualsWk)) 
=. ; 

else 
st = ” -. 

I/build path for child page 
intjl templ = new intjnum_levels]; 
fcr(int k=O;k<num_levels;k++) 

templ [k] = temp(k]; 
templjlevel+l] = j; 

II find next unused page and put item there 
for(int m=l;mulum_labels;m++) 
( 

int jj int2 = new intjnum_levels]; 

47 



Irk2 = pa(leIm].path; 

boolean faund=true; 
for(int n=O;nwum_leve!is;n++) 
( 

if(iin] != -1) 
( 

fOlUKl=falSe; 
n=num_leveIs; 

) 

&ound) 
I 

page(m].sePath(templ); 
~g~;l.n=n; = sl ; 

= 
1 -’ 

1 
1 

1 
catch(Exception e) 
( 

system.out.println(“ErTo~ ‘+e.to.stJingO); 
) 

) 
else I! if fIlename is blank, build blank pages undemeath 
( 

for(int j=O;jwum_butbnsj++) 
( 

strings1 =-“; 

/Ibuild path for child page 
int[l templ = new int[num_levels]; 
for(int k=O;kwJm_levels;k++) 

templ F] = temp(k]; 
templ ~vel+l ] = j; 

I/ find next unused page and put item there 
for(int m=l;murum_labets;m++) 
f 

int 0 int2 = new inqnum_ievels]; 
int2 = page[m].path; 

boolean found=true; 
for(int n=O;n<num_levek;n++) 
I: 

if(ii[n] != -1) 
( 

found = false; 
n=num_levels; 

) 

/f(found) 
( 

P This method scrambles the order of the hierarchy so it is partially randomized. 
It also defines the mission scenario.‘/ 
public void create_neb_hiirchy() 

48 



Random randGen = new Randon@; 

//Nawscrmnbkpathstomakearandomhiirchy 
System.out.prinUn(‘Randomking hierarchn; 
for(int item=1 ;item~num_labek;i++) 
( 

// get butta+presses and Mel for selected page 
int ta = new int [num_levels]; 

temp = page(i].path; 
int level = pageJitem].getLevei(); 

int MA_btn = b?mpFvel]; 
whik(fKM_btn == temp@evell) 

new_btn = (intXMath.abs(ran..mrxtlntO)%num_krttons); 

N identify path for new item 
int new_temp0 = new int [num_leveQ]; 
for(int i=O;i<num_levels;i++) 

nev_temp[i] = tempii]; 
new_temp(level] = new_btn; 

//nowlindtheitemwiththiipath 
int new-item = tindPagewithPath(new_temp); 
swap(hzvel,item,new_item); 

// Fix naming problem (bug-&) 
for(int i=O;kwm_labels;i++) 
{ 

if(wBeMame.esw~ 3) 
page(ij.name=-; 

) 

// Now set up repliiions 
System.out.prtntln(Treatiig mission scenario”); 
//System.out.println(Setting up repliion data.“); 
II 7 items with coi~esponding replies 
for(int Cl ;*=7;i++) 
( 

int item = ~mtXMath.abs(randGen.~~l~~)~~m_labe))+l ; 
while(page(iem].num_reptics I=0 11 page[iem].name.length()4) 

item = (int)(Math.abs(randGen.nextlnt())%(num_labetsl))+i; 
page(iem].num_replii = i; 

) 

/I Write data to file 
vAte_to_lileO; 

) 

P This method writes the created hierarchy to the tile ‘dataIiiems.tM. ‘/ 
public void mite_to_Me() 
( 

//openoutputfile 

Fii&putStream out_file; 
out_file = new FiiutputStream(VataMems.~); 
PrintStream out2 = new PrintStream(au_file); 

// mite new Hierarchy to Ele 
StringBuffer sbi = new SttingBuffer(num_ievels+“, ‘+num_buttons); 
out2.pttnun(sbl .toStringo); 
for(int i=O;knum_labels;i++) 
i 

49 



strtngBuffersb = new stringBuffer(~Jlame+=, ‘+pag~.getPoaition()+ 
., ‘+page[il.c&egortze_time+“, ‘+pagefl.num_replics); 

olQxtnun(sb.toStringo); 
] 

SttingBufferebS = new StringBuffer(Wriginal search time = ‘+0+-W+ 
‘EsMatednewseafchtime=“+O); 

~println(~.~Sbhso); 
) 
-W-e) 
( 

Syatern.out.printl~~ ‘+e.toStrtng()); 
) 

//ThismethodtakesavectcrdeacWngap&hofbuttonpuehesandretumstheindex 
//oftheitemwiththatpath. 
public int EndPagewithPath(i path) 
( 

int item=l; 

for(int i=O;knum_labels;i++) //go through all items in the hiirchy 
( 

boolean found-it= true; 
int checlQl = new int [num_levels]; 
check = pegeDl.pa~; 
for(int j=O;i<num_levels;J++) // go through path of each item to see if it matches 
( 

wch-w != pawiD 
( 

founC_it=fak; 
] 

1 
if(founl_it) 
( 

item = i; 
i=num_labels; 

] 

//Thismethodswapsthehierarchicalpositionsoftwoitems. ltis 
/I compkated because it alao has to swap al the children of those items. 
public void swap(int level,iti item, int new_item) 
( 

ti tempo = new int[num_Ievets]; 
int new_temd] = new int[num_ievek]; 
ti checa = new int [num_labeis][l; 

fo@t i=O;iwum_labels;i++) 
CheclQij = new inqnum_levels]; 

temp = page(item].path; 
new_temp = page(new_item].path: 

/I first copy all paths into a large array wtth changes made 
fcr(int i=O;*num_labets;i++) 
f 

bootean changel=true, change2=true; 

int hold! = new int[num_levels]; 

hdd = pasle(i&Yith; 

for(int j=O;i*num_levetqj++) 
checlQiHi1 = hold[jl; 

50 



//checktoeeelfpahofcunereltemlndudesthet- Pww= 
lf(clle@]m I= temdiD 

changel=false; 
WW&i~~~_~Hnp(jD 

- ; 
1 
// making changes in path of current item (ii necessary) 
@hangel) 

chedqil[level] = new_temp@evel]; 
if(change2) 

chedqil[levei] = temp(level]; 

I/ now copy everythiig back with changes included 
for(int i=O+num_labels;i++) 

pa~i).setPath(chec~); 
I 

//WKlOfS&UpC&SS 
1 

51 



This dass reads in data from ‘data/m&r.btt” and?MakeaM_time.txt” and 
conwtsthatdataintoseparatemotorand~timss. Itthenmodifies 
ths hierarohy from “datakearch_tii.~ into one that minimzee predicted search 
ttme. The w hierarchy is stored in the fk! vata/optimal.bcr. 

Written by Greg Francis, Purdue Univemity 
August 1997 

The views opinions, an&r Rndings cantained in thii report are those of the author 
and should not be con&rued as an off&l Department of the Army position, or decision, 
unless so designated by other documentatk. 

publkolassoptimkeextendsSetup 
( 

irrt motor_ti~; 
int ast=O, original_eot, currerrt_est, local_minima; 

public Optimize0 
( 

oupero; 

public static void main(String argsID 
( 

Optimize f = new Optiiize(); 
) 

/’ This method reads in data from files. It reads in between-item search times and 
hkarchiilayoutfromthefile’d atakard_time.~ and it reads motor times 
from the tile vawmotorw. 
overfidesmethodinsuper’! 
public void get_data_from_fik0 
( 

/I Get info from category data files 

String Wename = “datakearch_time.b#‘; 
Fite f - new File(fiiename); 
FiilnputStream labels = new FilelnputStream(f); 
DatalnputQream Iabei_fik = new DatalnputStream(labek); 

II Get num_levels and num_b&tons 
Sbing 8 = label_fUe.readLine(); 

Iparaewtinfo 
l/get num_ievels 
int end = s.indexOf~,~; 
String temp = s.substting(o,end); 
num_levsls = (int) Float.valueof(temp).fl~Val~; 

II get num_buttons 
temp = s.substting(end+l); 
num_buttons = (int) FloPt.MlueOf(temp).floatvalue0; 

52 



// Compute number of labels in Hierarchy for later use 
for(int i=Qhum_levels;i++) 

num_labels += gnt)Math.pm_~~,(d~~)i); 
/I Create pages 
page = new HharchyP~num_labals]; 
N Create array fa motor-time 
mator_time = new int[num_buttons+l][num_buttons+l]; 
//g8tppsaillfOfromd&i3fk 

for(int i=O;hum_labels;i++) 
( 

s = labelJle.readLine0; 

//parse needed information 
II get name 
M name-end = s.indexOf~,“); 
S&g name = s.sut&ing(O,name_end); 
ligetpc&on 
int @tion_end = s.ir&xOf~,‘,nams_end+l); 
String s2 = s.subsbing(name_end+l ,position_end); 
int posith = (it) FloaLvaiueOf(s2).floatValue4); 
II get be4weeMam time 
ht tims_end = s.indexOf~~,position_and+Z); 
Stdng s3 = s.wbstring(position_end+2,time_end); 
int tima = (iit) Float.valueOf(s3).floatValue& 
//get replications 
irtt raps_end = s.lastlndexOf(“,~; 
s2 = s.substring(reps_end+l); 
int reps = (it) Float.valueOf(s2).floatValue0; 

II set up page info 
page(ij = new HierarchyPage( num_levels, num_buttons, name, time, 

0, reps); 
page[ij.setPathfromPosition(position); 

] 
System.out.printl~Loaded page information.“); 

/I Get actual search time from ftle 
s = label_file.readLine& 
end = s.lastlndexOf(” 3; 
temp = s.substring(end+l); 
ast = (mt) Float.valueOf(temp).floatValueQ 

) 
-tWEx=9tione) 
( 

System.out_println(“Et~~ g+e.toStringO); 
] 
System.aut.printl~Loaded betwen-item times..“); 

System.out.pttntln(“Estimated st = l + comptie_expected_searcl_time~); 

System.out.println(“Loading motor data.?; 

// Get motor paramehrs from data file 
motor_time = new int [num_buh3ns+l~num_buttons+l]; 

Strtng Wename = ‘datahotorht”; 
File f = new File(filename); 
FiilnputStream motorgf = new FilelnputStream(f); 
DatalnputStream motor_pd = new DatalnputStream(motor_pf); 

for@ i=O;i*num_buttons+l;i++) 
for(int j=O;Fnum_buttons+l j++) 

( 
noat time; 
double stdev; 
Strings= motor_pd.readLine(j; 

// Parse informatii out of string 
//FkstSspacesarebuttonwdesandwhitespace 

53 



//needtofind~whitespacetoidentifyendoftimeinteger 
W end = s.indexOf(” ‘.S): 
Sbing s2 = ssubMng(4,end); 
time = FbaLvalueOf(s2).floatVaiue(); 
motor_time[ilIi] = (int) time; 

) 
System.aut.pri~Loaded motor informa8on.~; 

~YEMptione) 
( 

System.ouLprMn(Wr~ *+e.toString@; 
) 

I 

P This method wrltea a hierarchy to the file 3IaWoptimal.W. 
overrides medhod in super l / 
public void tie_to_fileo 
I 

//Open ol@XJtfik 

7 
FMntStream~ 
FiiStream out_*; 
out-tile = new FileOutputStream(“dataIo/optimal.td’); 
out2 = new PrintStream(ou_8le); 

StringBuffer sbl = new StringBuffer(num_levels+“, ‘+num_b&tons); 
otipri~sbl .toStringo); 
for(int i=O;iwum_labek;i++) 
( 

StringBuffer sb = new StringBuffer(page[ij.name+~, “+page[ij.getPositionsibjonO+ 
“, “+page[i].categtie_time+g, ‘+page~.num_replii); 

out2@ntln(sb.toString()); 
) 
StringBuffer sb3 = new StringBuffer~OriginaI search time = “+original_est+%“+ 

‘Estimated new search time = “+wrrent_est); 
out2.printtn@b3.toStringhina0); 

~Ex=Hong9 

System.ouLprintin(TrroRor: “+e.toStringO); 
) 

P This method creates a new hiitchy that minimizes prediied search time. 
overrides method in super ‘1 
pubiic void create_new_hierarchy() 
( 

Random randGen = new RandomO; 
/I Convert search-time data into categorization_time data by compensating for 
II m&r times 

System.out.prlntln(“Convertiig betweekiem time data into categorization_time data.“); 

for(int i=l;*num_labels;i++) 
( 

int 0 path = new int[num_fevels]; 
path = f.wMil.path; 
int level = page([.getLevel(); 
intctime=o; 
if(kW+O) 

dime = page[i].categorize_time - motor_time[pathjlevel-1 ll[path@evel]l; 
else //movement from “Next item” button 

dime = pageF].categorize_time - motor_time[8l[path(levell]; 
~~.categorize_tiategorire_time= ctime; 

) 

original_est = comph_time(); 
curlent_est = wigiil_est; 
local-minima = original_est; 

54 



SystemouLprW~Actual search tii = ‘+ast+llnEsttmated search time= ~+original_est); 

// actual search time (ast) and eatknated search time (original_est) may differ 
/I duetoroundingerrors 

// initialize simulated annealing parameters 
kit temf_coUtt=O; 
doubte temperature_tnk = (double)ast; 
double temperature; 

boolean found krcal_minima = false; 
// randomize Hkrarchy 
Sy&em.out.pdMtn(“Looking for a new local minima.\nRandomizing hierarchy...“); 
ti(int ttem=l;item~num_labets~iem++) 
( //for each item, swap its poeitkm with another from the same branch 

tnt level = page(item].getLevel(); 

//now pick a new button from the same branch in the hierarchy 
tnt new_btn = page[iem].pawlevel; 
while(lW_btll = page~em].pathpeveg) 

new_#n = (int)(Math.abe(randGen.nextlnt())%num_buttons); 

/I ktenhfy path for new item 
int new_tempO = new int [num_levels]; 
for(int i=O;icnum_fevels;i++) 

new_temp(i] = pagegtemlpathgj; 
new_temp[level] = new_btn; 

//nowfindtheitemwiththiipath 
int new&m = findPagewtthPath(new_temp); 
swap(level,item,new_ttem); 

) 
// paths scrambled, compute expected search time for scrambled hierarch 
curren_est = compute_expected_search_time(); 

// now keep going through search process u&it tt finds a local minimum 
while(lfound_local_minima) 
1 

System.out.prinU~Looking for local minima...l); 
N Now make changes to the Hierarchy 
tmcount=O; 
while(count ~num_tabels) 
( 

// update simulated annealing parameters 
temp_count++; 
temperature = temperature_init/(2+O.OOOS((double)temp_count)); 

/I pick an item at random, but not item zero (ii has no label) 
int item = (int)(Math.abs(randGen.nextlnt())%(num_labels-l))+l; 

// get button-presses for selected page 
int level = page(iiem].getLevel(); 

//now pick a new button from the same tree in the hierarchy 
int new_Mn = pagegtem].patb(levefJ; 
whik$new_btn == pagegtem].path@eveg) 

new_btn = (int)(MaUl.abs(mnd~.~~l~~)~~_~o~); 

//ideMypathfornewitem 
int new_temp0 = new int [num_tevets]; 
for(int CO;i<num_levels;i++) 

nsv_temfzrg] = pageriem].pathm; 
new_temp@evel] = new_btn; 

I! now tind the kern with thii path 
int new_item=MdPagewithPath(new_temp); 

/I Now swap items 
swap(level,item,new_item); 

55 



//compute eimuleted annealing probebilii 
double ea_prob = Math.exp(+ouble)sbq_est/temperature); 
sagrob = &l_proU(l+ea_prob); 

/IpidcarandomnumberbetweenOandl 
double prob = randGen.nextDoubie0; 
II keep swap if search time decreases, or random number lese than sagrob 
g swep_est < current_eet II ea_prob *= prob) 
( 

syatem.out.println(cutlen_est+- ‘*swap_est+” count=“+count 
+. temp -“+temperature+” “+temp_cwnt+. “+eegrob+ ” “+prob); 

ColU&=O; //resetcounterdnon-kepthewape 
curren_est = swap_- II update current search time 

] 
elsel!ewapback 
I 

count++; /I update counter of nowkept swaps 
l/swap beck if search time is worse: if the same, don’t bother 
if(smap_eet > cuflent_est) 

ewap(level.item,new_item); 
] 

llwritenewHbrarchytotileifitisthebestfoundeofar 
if(current_eet c local_miMne 88 temp_countmum_labels) 
( 

local_minima = currently 
syetem.ouLprtntin(wtlting current beet Hiirchy to file ‘beet.txr.\n”+ 

” E&mated search time = ‘+cutTent_est); 
wr@e_to_#eo; 

] 
] 
N after enough ineffective swaps (count > num_labels) 
N verify that we have a local minima, otherwise, keep making swaps 
found_loca_minima = locel_miniia_check(current_est); 

] 
] 

P This method veritiee that the current hierarchiil layout is a local minima, 
meaning that swepping a single item to any other possible position in its branch 
would not decrease the predicted search time. l / 
public boolean locel_minima_check(iit current_&) 
( 

System.out.printl~erifying that we have a bcal miniium...“); 
// go through all items 
for(iti item=O;itemcnum_labelqitem++) 

if(page[item].num_repGce >O) // make certain the item is looked et 
( 

II get button-pressee and level for selected page 
int tempD = new int [num_levels]; 
temp = page(item].path; 
int level = pege[item].getLevelO; 

//now go throu@ ell buttons from the same branch in the hierarchy 
for(int new_Mn = O:new_btnurum_buttons:~_btn++) 
( 

//bUikipthforSWaptObUttOn 

int new templl = new int [num_levels]; 
for(int i%;i<num_levels:i++) 

- rlew_km~~ tempm; . 
new_temp@evel] = new_btn; 

IInowfindtheitemwiththiipath 
int new_item=MdPagewithPeth(new_temp); 

swq(level,item,new_item); 

56 



I/ if march time does not Improve, swap back 
kit ewap_est = WmputQxpected_eearch_time(); 
if( ebvap_eet < curWul_eet) I/ keep ewep 
1 

curWlt_est = eMp_est; 
Syetem.outprintln(7his wee not a local minimum.“); 
return false; // exit and tell the optimization procedure to keep looking 

) 
eleeilewepback 
1 

e4vap(level,item,new_item); 
] 

// if no swap improved predk2ed search time, the current layout must be a 
//local minimum 
Syetem.out.prtnUn(7hie wae a bcal minimum.‘); 
return true; 

] 

P This method tekee the current hiirchicel layout, rune through all the 
items in the mieeion scenario, and computee the prediied search time 
for findiig ail the items 
It doee this by n&iig the path and items the user muet follow and categorize 
to find the target items It then ad& up motor and categorization time-s 
ee appropriate. ‘I 
public int compute_expected_eearch_time() 
(: 

int eet=o; 

I/ cycle throqh all items in mieeion scenerio 
fcr(int i=O;icnum_lebeB;i++) 
I 

if(pege[iJ.num_replks >O) 
I 

int search-time = 0; 
int tempO = new inqnum_levete]; 

temp = pag@ij.peth; 

II go through path of button presses 
// alweye eterte with “Next Terser (button 8) 
eeefch_time += motor_time[8l[temp(O~; 
for(int k=O;k<num_levels-l;k++) 

if(ternp(k]l=-1) 
1 

if(temp(k+l]!=-1) 
eearch_time += motor_time[temdk]l[tempIk+l I]; 

// build vector for current movement through path 
int new_temp0 = new int [num_leveQ]; 
for(int 10 =O;k2~num_leveW2++) 
1 

if(lo<=k) 
new_tempIk2l= temp(lQ]; 

else 
new_tempIlQ] = -1; 

] 
//now ilnd the item with thii current path and add its categorization 
I/ time to search time for target item 
int new item=fWPagewithPath(neM_temp); 
eearchjime += pege[new_item].cetegorize_time; 

) 
//multiplysearchtimeforitcmbynumberoftimesitksearchedfor 
eet += eearch_time*pege~.num_replice; 

) 
) 

return est; 

1 



lmpoll java.awt.‘; 
Import jatfa.io.‘; 

Thisd4g0~aninte~to~othrwghthe~~neadedtobui#an 
optimalhieramhy. ttaus,hcorrect seqwnca dher pragrams that gather needed 
data and compute the op(imizath algorithm. 

Written by Greg Francis, Pudue Unii 
August 1997 

The views ophions, and/or findings contained &I thii rep& are those of the authar 
and should not be construed as an off~%l Department of the Army position, or decision, 
unless so designated by 0th~ documentation. 

publloolass BullmalHl extenda Frame 
( 

Button w; 

y BuiiptimalHierarchy(String title) 

//setupframewithoptiibl&tona 

Ilsst size of diiy 
tMs.resize(600,400); 

Ilsetfont 
Font font = new Fony*Hehfetica”,ForkPLAlN,24); 
=tFonYforrt); 

//Create menubar 
MenuBar menubar = new MenuBar(); 
Menufile; 

this.setMenuBar(menubar)ar); 
Kraate fk menu. Add Quit. 
filewew Menu(“File”); 
fk.add(naw Menutem(Vuir)); 
manubar.add(t%e); 

II create buttons 
b=newButton[5]; 
b[O] = new Button(“Practice”); 
b(l] = new Button(“Motor data”); 
b(2] = new Button(“Hierarchy search”); 
b(3] = new Bulton(“Optimka~n~; 
U41= new ButtoncTeatw% 

saLayout(nsw ~layouw,1,10,2q); 
for(int i=O;iqii) 
1 

add@m); 
hm-ableo; 

) 
Wl.ena#eO; 

~P=Wo; 
thiS.ShOW(); 

58 



public static void maln(Sblng arZ)s[D 
( 

BuildO@nalHiitchy unb = new BuildO@nalHierarchy(“Build Optimal Hierarchy”); 

pubiic boolean action ( Event e, Object arg) 

( 
if(e.target instanceof Menuttem) 
( /watch for quit command 

String label = (Striig) arg; 
n(label.equals(“Quir))System.erit(o); 

) 

if(e.target instanceof Button) 
( 

if (e.tatget = qOl) // User goes through practice trials 
( 

qO].setLabel(“Just a second...“); 
for(ii i=O;ib;i++) 

w.diie(); 

S&up stp = new setup(-); 
q0].8etLabel(-Practkz-); 
Practice St = new PraAce(-Prarsice”); 

// enable button for next step 
ql J.enable(); 
return true; 

) 
else if (e.target == b[l ]) I/ User gathers motor time data 
( 

N check to see if motor time data is already gathered 
// if not, gather it 
File f = new File (“data”~motar.txt”); 
if( !f.exists()) 

MotorTime motor = new MotorTime(Wotor data”); 

for(ii i=O;i*5;i++) 
~.diile(): 

b(2].enableO; 
return true; 

else if (e.target == b[q) // User gathers between-item time data 
I 
’ q2].setLabel(“Just a second...“); 

for(int i=O;M;i++) 
b(&disable(); 

WUpStp=lWSfZtlJp& 
b(2].setLabel(Wiirchy search-); 
BearchTii st = new SearchTiiHiirarchy search”); 

;" if (e.target == w]) // Computer builds model and creates optimal hierarchy 

for(int i=O;M;i++) 
m.disable(); 

b(3].setLabel(“Come back in l/2 ho&); 

Optimize opt = new OphiieO; 
b[3].setLabel(“Optknize~; 
q4].enable(); 
return true; 

) 

59 



eke If (e.target == q4]) 
1 

II user gethers data with opthal hierarchy 

Teatliiirchy th = new TestHierarchy(-‘T&ing-); 

I 
return false; 

60 


