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Visual Display Delay Effects on Pilot Performance 

ROBERT M. WILDZUNAS, Ph.D., M.S., TERRY L. BARRON, M.S., 
and ROGER W. WILEY, O.D., Ph.D. 

WILDZUNAS RM, BARRON TL, WILEY RW. Visual display delay 
effects on pilot petfomance. Aviat Space Environ Med 1996; 
67214-21. 

Baclrground: The Helmet Integrated Display Sight System (HIDSS), 
originally proposed for the RAH-66 Comanche, displays sensor data 
from FLIR and image intensifiers, as well as flight instrument and tar- 
geting data. All these data will be processed through onboard computers 

before being displayed on miniature CRT’s. In addition to processing 
delays, delays also are arising from the helmet tracker and from sensor 
slewing that may increase the total visual display delay to as much as 
250 ms. Methods: Because display lag is one of the most important 
limitations affecting the ability of an aviator to use a display, we investi- 
gated the effects of 0, 67, 133, 267, 400, and 533 ms visual display 
delays on the flight performance of 10 volunteer U.S. Army aviators in 
a full motion flight simulator. Res&: There were few performance 
decrements at 67, 133, or 267 ms delays as compared with the 0 ms 
delay condition. Significant performance decrements consistently were 
observed at 400 and 533 ms delays. Conclusions: Given the anticipated 
visual display delays for the proposed system, flight performance, as 
measured within the range of flight conditions and profiles examined, 
should not be affected significantly, although the aviators will experi- 
ence an increase in workload to compensate for the delay effects. During 
low level flight, they will face additional risk due to their proximity to 
obstacles and a resulting decrease in their time to react and avoid colli- 
slons. Given the high accident rates, further research to investigate train- 
ing strategies to offset delay effects clearly is necessary. 

W 

HILE THE FUTURE DEVELOPMENT of the U.S. 
Army’s RAH-66 Comanche helicopter remains un- 

certain, the technological advances being developed for 
the program should still have considerable value for use 
in current and future rotary-wing aircraft. One such ad- 
vance now being examined for future rotary-wing sys- 
tems is the Helmet integrated Display Sight System 
(HID%). The HIDSS displays sensor information from 
forward looking infrared radar (FLIR) and image intensi- 
fiers, as well as flight instrument and targeting data. All 
these data are processed through onboard computers be- 
fore being displayed on miniature helmet-mounted dis- 
play devices. Although this system is intended to greatly 
enhance the pilot’s ability to fly at night and in adverse 
weather, there are potential drawbacks. The current de- 
sign for the HIDSS incorporates a visual display delay 
of 100 ms in presenting visual information to the pilot. 
Besides this processing delay, mechanical delays arising 
from the helmet tracker and from sensor slewing may 
increase the total visual display delay to as much as 250 
ms. Thus, the display delays proposed for the system 
could result in the visual display lagging substantially 
behind the aircraft’s actual motion. 

Bryson and Fisher (5) have identified display lag as a 
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critical limitation in affecting an aviator’s ability to use 
a display, giving lag priority over other display charac- 
teristics. They concluded that visual display lags should 
yield errors in spatial location that are proportional to 
the amount of the visual display delay. Other research 
has suggested that adaptation to visual delay is related 
inversely to the amount of the visual delay and may not 
occur for delays beyond 300 ms (16). In addition, the 
visual display delays proposed for the HIDSS are in the 
range, and in the direction that could dispose some pilots 
to a condition not unlike “simulator sickness” which, in 
turn, may reduce the operator’s performance and com- 
fort (12-14,18). Research on the performance effects of 
display lag remains equivocal. In his review, Wickens 
(30) concluded that visual display delay as small as 40 
ms can impair performance. Additionally, visual display 
delays near 100 ms have been found to degrade perfor- 
mance in a simulator (1 3 7 9 10,24,28) and to reduce I I I , 
overall system controllability (11). In contrast, visual dis- 
play delays of approximately 150 ms have been found 
acceptable (41, and other investigators have reported that 
visual display delays near 250 ms are permissible (20- 
22,291. However, the level of allowable visual display 
delay may be reduced under conditions that require se- 
quential, rapidly paced control inputs (251, as during 
nap-of-the-earth (NOE) flight, although the pilot proba- 
bly can maintain performance at the expense of increased 
workload (2). Experimental findings bearing on this issue 
are summarized in Table I. 

As Table I shows, performance in rotary-wing simula- 
tors may be more sensitive, to visual display delay than 
performance in fixed-wing simulators, and more difficult 
tasks may be more sensitive to visual display delay than 
less difficult tasks. Accordingly, the literature on simula- 
tor visual display delays suggests that visual display de- 
lays near those proposed for the HIDSS may cause degra- 
dations in pilot performance. 

The delays for this experiment were inserted into the 
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TABLE I. VISUAL DISPLAY DELAY AND ELIGHT SIMULATOR PERIXXMANCE RESULTS. 

Report fief .I Aircraft Type Task’ Outcome 

Uliano, et al. (28) Rotary-wing Slalom maneuver 89 ms delay reduced performance 

Cooper, et al. (7) Fixed-wing Carrier landing 100 ms delay changed pilot control behavior 

Ricard, et al. (24) Rotary-wing Hover over ship 63 ms delay degraded performance 10% 

Baron, et al. (2) Rotary-wing Fixed hover 132 ms delay reduced performance 

Whitley and Lusk (29) F&d-wing Sidestep landing 300 ms delay reduced performance 

Crane (9) Fiied-wing Keep wings level 96 ms delay reduced performance 

Miller and Riley (211 Fixed-wing Sinusoidal tracking Break point in performance at 240 ms 

Miller and Riley (22) Fixed-wing Sinusoidal tracking Up to 250 ms delay acceptable 

Lusk, et al. (20) Fixed-wing Maintain heading 300 ms delay reduced performance 

l The reports are arranged in order of decreasing apparent task difficulty. 

visual displays of a NUH-60 full motion flight simulator 
with the objectives of providing objective and subjective 
assessments of the effects of visual display delays near 
those proposed for the HIDSS on aviator performance. 
While the NUH-60 simulator’s visual display is not a 
HIDSS, we feel that it provided a useful surrogate system 
for conducting a parametric investigation of the effects 
of visual display lags on aviator performance in a rotary- 
wing aircraft. In addition, simulation is safer than testing 
in actual aircraft and provides full field-of-view delay 
with a motion base -something HIDSS technology is 
not yet equipped to do. Therefore, the results obtained 
document the costs of the proposed visual display delays 
in terms of their potential effects on performance and 
safety of flight, and may help in developing performance 
requirements for future display systems. 

METHODS 

Subjects: This project was approved by the Human Use 
and Scientific Review Committees of the U.S. Army 
Aeromedical Research Laboratory (USAARL), Ft. Rucker, 
AL, and was monitored while in progress by an aviation 
research psychologist and USAARL’s Flight Safety Of- 
fice. Ten volunteer aviators (ages 23-35) were recruited 
as subjects. Although the recruitment announcement was 
not gender restrictive, all who volunteered were male. 
All subjects were current and qualified in the UH-60 and 
were familiar with the NUH-60 simulator. Informed con- 
sent was obtained from each subject. 

Previous research at USAARL has employed similar 
numbers of aviators when measuring performance vari- 
ables of the sort that are of interest in this experiment 
(6,26,27). Given the results of prior research and the re- 
peated measure design of this experiment, a power anal- 
ysis found that an alpha of 0.05 would yield a beta of 
approximately 0.01, with power equal to 0.9 for an effect 
size of one standard deviation. This analysis suggested 
that we should have a 90% probability of identifying a 
difference between means one standard deviation in size. 

lnstrumentution and apparatus: The experiment was con- 
ducted in USAARL’s NUH-60 simulator. The simulator 
was “on motion” during all flights for this experiment. 
Air temperature during flights was maintained between 
68-72”F, and relative humidity was maintained between 
38-60%. The simulator’s software load was modified to 
allow insertion of specified visual display delays into the 
simulator visuals. These visual display delay times were 
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added to the system delays inherent in the simulator. 
The inherent or “phantom” delay for the simulator, 116 
ms 2 16 ms, was determined by calculating the averages 
of 10 measurements. Thus, the total visual display delay 
(Table II) was the sum of the inherent delay and the 
experimentally inserted delay. However, given that the 
inherent delay was in the range of that found in the 
actual aircraft, only the added delay values are reported 
here. 

Procedure: Subjects were briefed thoroughly by a rated 
aviator familiar with the mission profile. This individual 
also served as copilot-navigator on all flights. Following 
the briefing, subjects provided informed consent to par- 
ticipate in the experiment. Then, subjects practiced flying 
a standardized profile (Table III) with zero added delay 
until they reached asymptotic performance (three con- 
secutive flights with no significant performance change 
on NOE altitude, downwind airspeed, and hover head- 
ing). This required 4 d of practice, on average. 

For the experimental sessions, subjects flew the profile 
a total of 18 times (6 delays x 3 repeated trials). Each 
delay level was flown in a block of three trials, and the 
order of blocks was counterbalanced to offset any car- 
ryover or practice effects from previous levels. These 
flights were completed over 6 d (1 d for each block of 
the 6 delay levels). Each flight of the profile required 
approximately 45 min to complete, and each of the 6 test 
session days lasted approximately 3 h, with question- 
naires administered between flights. Objective perfor- 
mance data (i.e., the degree to which the subject main- 
tained the required standards for each maneuver) were 
sampled once per second during each flight by a VAX 
780 and stored for subsequent analysis. 

Because we expected a substantial amount of compen- 
sation by the subjects (i.e., a pilot compensating for poor 
aircraft handling qualities at the expense of increased 
workload), we solicited and collected subjective assess- . 

TABLE II. VISUAL DELAY LEVELS. 

Added Delay Inherent Delay Total Delay 

0 116 116 
67 116 183 

133 116 250 
267 116 383 
400 116 516 
533 116 650 
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TABLE III. NUH-60 FLIGHT SIMULATION MISSION PROFILE. 

Maneuver Standard to Maintain 

Traffic Pattern 
VMC Takeoff 
Right standard rate turn (upwind to crosswind) 
Straight-and-level flight (crosswind) 
Right standard rate turn (crosswind to downwind) 
Straight-and-level flight (downwind) 
Right descending turn (downwind to base) 

VMC Approach 
Hover 
Hover Turn 
Nap-of-the-Earth Flight 

Formation Flight 

Pinnacle Landing 

Maintain heading 39, climb to 1000 ft. MSL. 
Turn from 350”-OW, altitude 1000 ft. MSL and airspeed 100 knot& 
Maintain heading 0809 altitude 1000 ft. MSL and airspeed 100 knots. 
Turn from O&W-170”, altitude 1000 ft. MSL and airspeed 100 knots. 
Maintain heading 170”, altitude 1000 A. MSL and airspeed 100 knots. 
Maintain 500 fi * mir-’ descent while turning from 170”-260”. descend 

from 100 ft. MSL to 800 ft. MSL. 
Maintain heading 350”, descend and land to specified area on runway. 
Maintain heading 3509 altitude 10 ft. AGL, no drift. 
Maintain altitude 10 ft. AGL, rate of turn not to exceed 3O“*s-‘, no drift. 
Maintain altitude 30 ft. AGL, airspeed 100 knots, heading as depicted 

on Global Positioning System (GPS) needle, avoiding obstacles. 
Maintain three rotor disk separation, at a 30” angle behind leadship 

(staggered left formation). Maintain leadship’s altitude and airspeed. 
Maintain heading 100“, descend and land to 1300 ft. MSL pinnacle. 

* VMC (Visual Meteorological Conditions) 

ment and questionnaire data. After each flight, subjects 

completed a Symptom Checklist (191, the NASA Task 
Load Index (TLX) (15), and the Handling Quality Rating 
Scale (HQRS) (8). The former addressed 16 symptoms 
related to motion sickness such as stomach awareness, 
blurred vision, sweating, dizziness, etc. Subjects rated 
the extent to which they experienced these symptoms 
from 1 (none) to 4 (severe). A single score was obtained 
for each flight by summing all the ratings. The NASA 
TLX recorded subjective taskload experienced within 6 
domains (mental, physical, temporal, performance, ef- 
fort, and frustration), along a continuum ranging from 1 
(low) to 10 (high). In keeping with the suggestion of 
previous research (17,231, we weighted each subscale of 
the TLX equally. 

maintained the required standards for all maneuvers (Ta- 
ble III). The individual maneuver scores (not shown) are 
a composite taken from the various components required 
to perform the maneuver [e.g., NOE score = (airspeed 
score + altitude score + heading score)/3]. A visual ex- 
amination of Fig. 1 reveals that increasing amounts of 
delay had an increasingly detrimental effect on flight 
performance. 

T’he HQRS is a questionnaire that provided an overall 
subjective assessment of performance. This scale mea- 
sured both the pilot’s rating for the performance charac- 
teristics of the simulator, and the ease and precision with 
which he could perform the maneuvers. The rating scale 
ranged from 1 (excellent handling, highly desirable, pilot 
compensation not a factor for desired performance) to 
10 (major deficiencies, control will be lost during some 
portion of operation). A rating of 5, near the midpoint, 
suggested that the delay level caused moderately objec- 
tionable shortcomings that required considerable pilot 
compensation for adequate performance. Subjects also 
were asked how much delay, if any, they perceived dur- 
ing the flight. This measure was rated from 1 (none no- 
ticed) to 5 (an excessive amount). Finally, a debriefing at 
the end of the simulator session allowed subjects to make 
any supplementary comments regarding the flight. After 
completing their simulator flights, subjects were advised 
to refrain from actual flight until the next duty day, in 
keeping with current guidelines to allow the dissipation 
of any possible symptoms of simulator sickness (4). 

The composite scores taken from each flight were sub- 
jected to a 6 (maneuver) x 6 (visual display delay) X 3 
(trial) repeated measures analysis of variance (ANOVA). 
This analysis revealed significant main effects for maneu- 
ver [F(5,54) = 76.63, p < 0.00011 and for delay [F(5,270) 
= 9.44, p < 0.00011. All remaining effects were nonsig- 
nificant [Tr,F(2,108) = 0.86, p < 0.4281; M x D, F(25,270) 
= 0.96, p < 0.5240; M X Tr, F(10,108) = 1.10, p < 0.3711; 

4 

t 

N=30 

i 

RESULTS 

The objective performance data taken from the simula- 
tor are presented in Fig. 1. The magnitude of the score 
(% of 100) represents the degree to which the subject 

/ I 1 I !  I 

0 67 133 267 400 533 

Delay (ms) 

Fig. 1. Objective delay performance data taken from the NUH-60 
flight simulator (collapsed across trials and maneuver). 
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5 
g15- 

BL 0 67 133 267 400 533 

Delay (ms) 

Fig. 2. Mean subjective response data taken from the symptomology 
questionnaire. Sixteen individual symptoms were rated according to the 
following scale: 1 = None, 2 = Slight, 3 = Moderate, and 4 = Severe. 
The ratings then were totaled. Higher mean scores suggest greater sever- 
ity of motion related symptoms experienced during each of the delay 
conditions (minimum score = 16, maximum score = 64; BL = preflight 
baseline). 

D X Tr, F(1030) = 0.57, p < 0.8363; and M x D X Tr, 
F(50,540) = 0.89, p < 0.69321. For the maneuver main 
effect, a Tukey HSD (Honest Significant Difference) post 
hoc comparison revealed that in general, subjects per- 
formed the IO-ft hover and IO-ft hover-turn significantly 
better than all other maneuvers, and performed the forma- 
tion and pinnacle landing maneuvers significantly worse 
than all the others. A similar Tukey HSD comparison for 
the delay main effect revealed that subjects’ performance, 
as compared with that in the 0 rns delay condition, was 
significantly lower at 400 and 533 ms of added delay. 

The analyses of the subjective data (Symptom Check- 
Iist, NASA Task Load Index, and the Handling Qualities 
Rating Scale) were two factor repeated measure ANO- 
VA’s with repeated measures over delays and trials (in- 
cluding preflight baseline scores with the Symptom 
Checklist). For the Symptom Checklist, response data 
were recorded after each flight, and preflight reports of 
symptoms were used as a baseline. Higher total scores 
suggested greater severity of motion-related symptoms. 
These data, shown in Fig. 2, revealed significant main 
effects for delay [F(6,54) = 3.73, p < 0.00351 and trial 
[F(2,18) = 4.05, p < 0.03541. In addition, there was a 
significant interaction between delay and trial [F(12,108) 
= 2.13, p < 0.02031. A Tukey HSD comparison showed 
that discomfort symptoms reported after the longest de- 
lay condition (533 ms) were significantly greater than 
after all other flights, and that in particular, the symp- 
toms reported after the second and third trials of that 
delay level were significantly greater than after the first 
trial. 

In keeping with the suggestion of previous research 
(9,16), each subscale of the NASA TLX was weighted 
equally. Subjects rated taskload for 6 subscales (mental, 
physical, temporal, performance, effort, and frustration) 

along a continuum ranging from 1 (low) to 10 (high). 
Lower ratings suggested reduced taskload demand in 
that domain. The exception to this was the performance 
subscale, where low ratings suggested better subjective 
performance and high ratings reflected worse. Subscale 
ratings below the midpoint value of 5.5 were interpreted 
as relatively positive. The mean task ratings for each of 
the six delays are presented in Fig. 3. Overall, subjective 
taskload for each subscale appeared to have increased 
significantly during the two greatest levels of delay. 

A 6 (task) x 6 (delay) x 3 (trial) repeated measures 
ANOVA was applied to the data. This revealed signifi- 
cant main effects for delay [F(5,45) = 13.96, p < 0.00011 
and a significant two-way interaction for task x delay 
[F(22,225) = 2.26, p < 0.0009]. All remaining effects were 
nonsignificant [Ta, F(5,45) = 0.57, p < 0.7218; Tr, F(2,18) 
= 3.26, p < 0.0618; Ta x Tr, F(10,90) = 0.98, p < 0.4622; 
D X Tr, F(10,90) = 0.31, p < 0.9763; and Ta X D X Tr, 
F(50,450) = 0.81, p < 0.81991. A Tukey HSD comparison 
showed that for the delay main effect, subjective taskload 
was significantly greater for the two longest delay levels 
(400 and 533 ms) than for the four shortest delay levels 
(0,67,133,267 ms). However, taskloads were not signifi- 
cantly different between 400 and 533 ms delay levels. 
Tukey HSD results for the 2-way interaction between 
task and delay showed that in the longest delay condi- 
tion, taskload for the mental and effort subscales was 
significantly greater than for the performance subscale, 
and that within the performance subscale, the 400 ms 
delay was not significantly different from the 67 and 267 
ms delay levels. 

The first part of the HQRS provides a measure of the 
pilot’s rating for the performance characteristics of the 
simulator, the ease and precision with which the pilot 
could perform the maneuvers, and the amount of pilot 
compensation demanded for the required operations. 
These data, shown in Fig. 4, suggest that increases in 
delay result in poorer aircraft handling qualities and in- 
creased compensatory demands on the pilot. 

These data were subjected to a 6 (delay) X 3 (trial) 
repeated measure ANOVA, which revealed a significant 
main effect for delay [F(5,45) = 16.07, p < 0.00011. All 
remaining effects were nonsignificant [Tr, F(2,18) = 0.22, 
p < 0.8017; and D X Tr, F(10,90) = 0.75, p < 0.67871. A 
Tukey HSD comparison for the delay main effect re- 
vealed that HQRS ratings were significantly greater at 
400 and 533 ms of added delay, as compared with ratings 
in the other delay conditions. 

The second section of the HQRS assessed the amount 
of delay perceived during each particular flight (Fig 5). 
A one-way ANOVA on these data revealed a significant 
main effect for delay [F(5,45) = 27.99, p < 0.00011, and 
the Tukey HSD comparison showed that subjects re- 
ported a significant increase in the amount of perceived 
delay during the 267,400, and 533 ms delay conditions 
as compared with the lower delay conditions. There were 
no differences in reported perceived delay up to 133 ms. 

In addition to the objective data recorded by the simu- 
lator computers and the subjective reports given by the 
pilot, the simulator operator kept a tally of the number 
of crashes during each flight. These data were important 
in that when the pilot crashed, the scoring routine in 
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lo 1 

8 
N=30 

Fig. 3. Mean task scores for each subscale of the NASA Task Load Index (TLX) during each of the six delays. 

the simulator stopped, and the operator had to reset the 
computer manually in order to complete the flight from 
where the crash occurred. (Crash data did not affect the 
overall composite score except that scores were deflated 
when pilots flew outside the prescribed parameters.) The 
data for the number of crashes recorded during each trial 
for each delay level are shown in Fig. 6. 

These data were subjected to a 6 (maneuver) X 6 (de- 
lay) x 3 (trial) repeated measure ANOVA. This analysis 
revealed that all main effects and 2-way interactions 
were significant [M, F(5,45) = 7.82, p < 0.0001; D, F(5,45) 
= 5.26, p < 0.0007; T, F(2,18) = 18.77, p < 0.0001; M x 

,4 

z 31 - _A’ 

t ieAT 

N=30 

2: 
0 67 133 267 400 533 

Delay (ms) 

Fig. 4. Average ratings for the Handling Qualities Rating Scale 

(HQRS). 

D, F(25,225) = 2.96, p < 0.0001; M x T, F(10,90) = 5.02, 
p < 0.0001; and D X T, F(10,90) = 2.66, p < 0.00681. 
Only the 3-way interaction between maneuver, trial, and 
delay was nonsignificant [F(50,450) = 1.31, p < O.OSlS]. 
A Tukey HSD comparison showed that the number of 
crashes recorded during the 400 and 533 ms delay condi- 
tion were significantly greater than during all other delay 
levels, and that in particular, these crashes occurred more 
often during the NOE segments than in all other seg- 
ments of the flight. A practice effect was evident by a 
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Fig. 5. The amount of perceptible delay, rated from 1 (none noticed) 
to 5 (an excessive amount), increased significantly for delay levels above 

267 ms. 
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Fig. 6. Mean number of crashes recorded during each delay level 

broken down by trial and maneuver. No crashes were recorded for the 
traffic, or hovering maneuvers, and these data are not shown. In general, 
the number of crashes increased with increasing levels of delay. How- 
ever, accident rates declined with practice as the number of trials in- 
creased. 

significant reduction in crashes during the third trial as 
compared with the first two trials, particularly during 
the longer levels of delay. 

DISCUSSION 

The purpose of this experiment was to determine the 
effects of delays in visual display information on aviator 
performance. We inserted, through software modifica- 
tions to a NUH-60 flight simulator, 0, 67, 133, 267, 400, 
and 533 ms of visual delay into the display system. 
Whereas display lag is one of the most important limita- 
tions affecting the ability of an aviator to use a display 

(51, these results could be used to help establish guide- 
lines for allowable delays in image processing and en- 
hancement systems currently being developed for mili- 
tary applications. Some of these proposed applications 
display sensor data from FLIR and image intensifiers, as 
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well as flight instrument and targeting data. The pro- 
cessing delays, along with delays arising from the helmet 
tracker and from sensor slewing, could increase the total 
visual display delay to as much as 250 ms. 

We found that visual display lags yielded errors that 
were proportional to the amount of the visual display 
delay. However, data from this experiment suggest that 
delays of 250 ms should not significantly affect flight 
performance. This agrees with other investigators who 
have reported that visual display delays near 250 rns are 
permissible (20-22,291. The finding that some maneuvers 
were performed better than others may reflect a differ- 
ence in task difficulty. Interestingly, our data also suggest 
that the effects of delay may be equal for tasks of varying 
difficulty in that we failed to find an interaction between 
maneuver and delay. 

Overall, the objective data for the delay effect in the 
simulator showed that aviators could perform all the 
required maneuvers with up to 267 ms of visual delay 
as well as they could in the 0 ms delay condition. How- 
ever, there were significant decrements in performance 
at delay levels 2400 ms. Although, since the maximum 
allowable delay for these maneuvers may actually lie 
between 267 and 400 ms, further research with smaller 
delay increments should be performed to determine pre- 
cisely the maximum allowable display lag. 

However, given the current data, we also found that 
subjects reported significant decrements in the handling 
qualities of the simulator that resulted in a need for 
greater compensation by the pilot at the two highest de- 
lay levels (400 and 533 ms). This increased demand on 
the pilot also was reflected in the increased reports of 
taskload at the two highest levels of delay. These results 
were consistent with the literature suggesting that in- 
creasing visual display lags may reduce the operator’s 
performance and comfort (13) although the pilot proba- 
bly can maintain performance at the expense of increased 
workload (2). 

One plausible explanation for the performance decre- 
ment at high delay levels is that at these levels of delay, 
display lag is noticeable to the subject and that this in- 
duces motion sickness related symptoms that in turn ad- 
versely affect flight performance. These delays were in 
the range, and in the direction, to dispose some pilots to 
a condition not unlike “simulator sickness” (12,14,18). 
However, we discounted this argument given that sub- 
jects reported that delays 2267 ms were significantly 
more perceptible to them, yet reported significant in- 
creases in motion sickness related symptoms only in the 
533 ms delay condition. 

Although there were no statistically significant perfor- 
mance decrements below 400 ms of delay, the operational 
significance of low levels of delay cannot be overlooked. 
Initially, the accident rates may appear low, but when 
converted to the standard measure of accidents per 
100,000 h, these accident rates are several magnitudes 
above those seen in Army aviation. Even at 67 ms, the 
smallest inserted delay level, the calculated overall crash 
rate was 370 per 100,000 h. Based on U.S. Army Safety 
Center data, this is 170 times the Class A (major accident) 
average for the last 10 yr (2.13 accidents/lOO,OOO h) and 
90 times the worst-ever year on record (4.09 accidents/ 
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100,000 h, established in 1973). That these high rates may 
be attributed to the visual delay is given by the observa- 
tion that there were no crashes in the zero delay condi- 
tion. In addition, there were no crashes in the traffic pat- 
tern, or the two hovering maneuvers, even at the 533 
ms delay level. The majority of crashes recorded in this 
experiment occurred during the NOE segments. This is 
consistent with the literature (25) that states the allowable 
level of visual display delay is reduced under conditions 
like NOE flight that requires sequential, rapidly paced 
control inputs. However, it is noteworthy that during 
the debriefing sessions, pilots consistently expressed their 
opinion that they should have been able to modify their 
airspeed to offset delay effects, especially during low 
level flight. This is not unlike standard night vision device 
flight planning procedures that allow the pilot to tailor 
mission performance limits (e.g. airspeed) to adjust for 
environmental factors such as low ambient light levels. 

be obtained readily by all readers from the primary author upon re- 
quest. 

Dr. Wildzunas is a Research Psychologist in the Visual Sciences 
Branch, Aircrew Health and Performance Division of the U.S. Army 
Aeromedical Research Laboratory. 
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