USAARL Report No. 95-23

U. S. Army Rotary-Wing Emergency Egress Study

By

Timothy R. Swingle

Research Support Division

May 1995

Approved for public release; distribution unlimited.

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577
Notice

Qualified requesters
Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address
Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition
Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

[Signature]
JAMES E. BURKE
MAJ, MS
Director, Research Support Division

Released for publication:

[Signature]
ROGER W. WHEELER, O. D., Ph.D.
Chairman, Scientific Review Committee

[Signature]
DENNIS F. SHANAHAN
Colonel, MC, MFS
Commanding
This study was conducted in support of a NATO AGARD (Advisory Group for Aerospace Research and Development) effort to survey emergency egress mechanisms for all helicopters. This particular study deals with U.S. Army helicopters. The study consists of photographs and diagrams of each exit system, and a brief synopsis of the emergency egress procedure including: location and description of the operating mechanism, location of and ease of viewing the operating instructions, force required to operate, direction of opening, size of aperture and restrictions to evacuation, overall ease of operation and access for crews, and extent of instructions in the operators manual.
Acknowledgments

I would like to thank CPT David Parker, commander, A Company, 1/223th Aviation Battalion, ATB, for allowing me to utilize his aircraft. Also, I wish to thank the mechanics of DynCorp at Fort Rucker for assisting me in the study. For a variety of assistance, I am grateful to these coworkers at USAARL: Linda Messer for her background research; Larry Thomas for his photography; James Burkett for manufacturing of the test equipment; Udo Volker Nowak for his editing; and John Sowell for his publishing support.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Method</td>
<td>3</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>4</td>
</tr>
<tr>
<td>Conclusions</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>17</td>
</tr>
<tr>
<td>Appendix A. Figures supplement</td>
<td>18</td>
</tr>
</tbody>
</table>

List of figures

1. UH-1 cockpit area .. 4
2. UH-1 cockpit emergency egress handles 4
3. UH-1 cockpit diagram .. 19
4. UH-1 cabin area ... 20
5. UH-1 cabin emergency egress handles 5
6. UH-1 cabin emergency exits 5
7. UH-60 cockpit area .. 6
8. UH-60 cockpit emergency egress handles 6
9. UH-60 cockpit diagram 21
10. UH-60 cabin area ... 7
11. UH-60 cabin emergency egress handles 7
12. UH-60 cabin emergency exits 22
13. AH-1 copilot/gunner cockpit area 8
14. AH-1 copilot/gunner emergency egress handle 8
15. AH-1 pilot cockpit area 9
16. AH-1 pilot emergency egress handle 9
17. AH-1 cockpit emergency exits 23
18. AH-64 copilot/gunner cockpit area 10
19. AH-64 copilot/gunner emergency egress handle 10
20. AH-64 pilot cockpit area 10
21. AH-64 pilot emergency egress handle 11
22. AH-64 ground crew emergency egress handle 11
23. AH-64 cockpit emergency exits 24
24. OH-58 cockpit area ... 12
25. OH-58 cockpit emergency egress handles 12
26. OH-58 cabin area .. 13
27. OH-58 cabin emergency egress handles ... 13
28. OH-58 emergency exits ... 25
29. CH-47 cockpit area .. 14
30. CH-47 cockpit emergency egress handles ... 14
31. CH-47 cabin area emergency egress door strap 15
32. CH-47 cabin area emergency egress window straps 15
33. CH-47 cabin area emergency egress ramp 15
34. CH-47 cockpit and cabin emergency exits 26
35. CH-47 cabin area and ramp emergency exits 27
36. UH-1 Huey schematic showing dimensions of egress areas 28
37. UH-60 Black Hawk schematic showing dimensions of egress areas 29
38. AH-1 Cobra schematic showing dimensions of egress areas 30
39. AH-64 Apache schematic showing dimensions of egress areas 31
40. OH-58 Kiowa schematic showing dimensions of egress areas 32
41. CH-47 Chinook schematic showing dimensions of egress areas 33
Background

This study was a partial effort to survey the emergency egress mechanisms for all helicopters in support of a North American Treaty Organization (NATO) Advisory Group for Aerospace Research and Development (AGARD). This part of the study deals only with U.S. Army helicopters.

A literature search revealed the only U.S. study of this kind had been a survey of egress from U.S. Navy fixed-wing jet aircraft over water. A study was done by BioTechnology, Inc., to see how best to present the emergency egress information in the manual of the Naval Air Training and Operating Procedures Standardization Program (NATOPS). The study concluded that the best way to facilitate learning was for the manual to strongly emphasize pictorial descriptions. Also, the study's authors found that presentations with pictorial support had a higher rate of learning and retention (Post and Kershner, 1979).

The Naval Aerospace Medical Institute then was tasked to prepare mechanicals (layouts) on emergency egress to be included in all aircraft NATOPS manuals. This tasking also included standardization of the mechanicals. The process for manual standardization was developed by Lee, 1990. This paper follows Lee's suggested presentation method.

Method

The intent of the study was to evaluate various factors affecting the egress from U.S. Army helicopters. Factors include: location and description of the operating mechanism, location of and ease of viewing the operating instructions, force required to operate, direction of opening, size of aperture and restrictions to evacuation, overall ease of operation and access for crews, extent of instructions in the operator's manual, and finally photos of each apparatus.

Operator's manuals for each aircraft were reviewed and pertinent information was extracted to include system descriptions, operating procedures, and equipment diagrams. In all the operator's manuals, chapter 2 describes systems and chapter 9 covers emergency procedures.

The study was conducted at Cairns Army Airfield, Fort Rucker, Alabama. Aircraft used were from "A" Company, 1/223 Aviation Battalion. The results were obtained by attaching a Chatillon DPP-25 force gauge to the emergency egress handles on the aircraft and operating the mechanism according to the operator's manual. All handles that required safeties were safe tied with 0.020" safety wire. The cockpit exit restrictions common to most U.S. helicopters are the collective (left side only), the cyclic, and armor plating.

The aircraft studied were the UH-1 Huey, the UH-60 Black Hawk, the AH-1 Cobra, the AH-64 Apache, the OH-58 Kiowa, and the CH-47 Chinook. The study was divided into two areas of concentration for each aircraft: the cockpit egress and the cabin area egress.

Note: All nonphoto figures are found in the Appendix.
Results and Discussion

Cockpit — Emergency exit release handles are located on the front of the cockpit doors, directly above the upper hinge. The T-shaped handles are yellow and black striped. Operating instructions are readable easily and located on the front door frame above the T-handle, as shown in Figures 1 and 2. Pulling the T-handle upwards pulls a cable which releases pins through the door hinges. Once the pins come out, the hinge separates, and the cockpit door is free to fall away. Force required to break the safety and disengage the pins is 25-30 lbs. The door then will fall off by itself or with slight pressure upon it. The opening then is the size of the door frame minus the restric-

Figure 1. UH-1 cockpit area.

Figure 2. UH-1 cockpit emergency egress handles.

itions of the cyclic, armor plate and the collective. The operator's manual displays the emergency exit release handles, but does not have them labeled as seen in the Appendix, Figure 3. Emergency procedures in chapter 9 of the operator's manual are simple and adequate. The cockpit
doors jettison easily and quickly. The armor protection panel on the seat is difficult to slide rearward and takes both hands to operate. With the panel forward, it is difficult to egress and this is the procedure's weak link.

Cabin --- The cabin door window emergency release handles are located at the bottom center of each window. The handles are yellow and black striped. Operating instructions clearly are visible as can be seen in Figures 4 and 5. Lifting up on the handle with 20-25 lbs. of force retracts stops along the bottom of the window. The bottom of the window then can be pulled inward with minimal force. The top of the window falls free of the frame and the entire window drops into the cabin. It is important to note the window can not be pushed outward, it must pulled inside, and is so noted in the instructions. Then occupants are unrestrained from exiting the aircraft. The operator's manual displays a labeled picture of the exits and handles as seen in the Appendix, Figure 6. Emergency procedures in chapter 9 are simple and adequate.

Figure 5. UH-1 cabin emergency egress handles.

Figure 6. UH-1 cabin emergency exits.
UH-60 Black Hawk

Cockpit --- Emergency release handles are located on the inside frame of each cockpit door. They allow the cockpit doors to be jettisoned in case of an emergency. The handles are yellow and are surrounded with ample instructions as shown in Figures 7 through 9. Pulling the emergency handle with 40-45 lbs. of force turns a cam inside the door allowing the door to be separated from the hinge at the mounting points. The operator's manual emergency procedure states the door then may be jettisoned by kicking the lower forward corner. This procedure works; however, on the doors tested, it required substantial force to dislodge the door from the hinge. Once the connection is broken, the door falls away from the aircraft. As with the UH-1, the egress is hampered substantially if the protective armor plating has been moved forward. However, unlike the UH-1, the plating on the UH-60 can be moved rearward with only one hand. The weak link of this procedure is the process of kicking the door away from the hinge.

Cabin --- The egress from the cabin area of a UH-60 is unique and poses no
physical difficulties, but it could be confusing under certain circumstances. First under normal egress procedures, passengers seated in the aft area are unable to reach the handle of the cabin door when the system of seating four across the center is used. The doors must be opened by someone sitting in the forward area or from the outside. Second, there is only one cabin door window jettison handle on each cabin door, and they are in different locations on each side. The handles are located under the front window on the left cabin door and under the rear handle on the right side door as shown in Figures 10 and 11. In the Appendix, the cabin's emergency exits can be seen in Figure 12. The locations make it very difficult for passengers in the front area to operate the right side emergency exit, and for passengers in the rear area to jettison the cabin windows on the left side. The direction of handle pull on each side also is different. On the left side the handle is pulled aft and the handle on the right is pulled forward as explained under emergency exits in the operator's manual. On the positive side of the egress procedure, it takes only approximately 10 lbs. of force to operate the handles and then the windows easily are pushed outward. Pulling the handle releases both the front and the rear cabin door windows on that side.

Figure 10. UH-60 cabin area.

Figure 11. UH-60 cabin emergency egress handles.
AH-1 Cobra

Cockpit only --- The Cobra contains a canopy jettison system that can be operated from either the pilot’s rear seat or the copilot/gunner’s, (CPG) front seat. The arming/firing mechanisms are located near the instrument panel and have operating instructions on them as shown in Figures 13 through 17. These firing mechanisms are operated by turning the handle 90 degrees counterclockwise with a torque of 6-12 inch-pounds. This maneuver arms
the assembly. The operator then pulls the handle with 20-35 lbs. of tension, firing the primer and causing the cutting assembly to be detonated. The process is completed by the detonation cord, that burns around the periphery of all the side panels, severing them from the fuselage. This system is explained in chapter 2, section II of the operator’s manual, but there are no emergency procedure steps outlined in chapter 9. Once the canopy is jettisoned, there is a clear access area for the pilots to egress.

Figure 15. AH-1 pilot cockpit area.

Figure 16. AH-1 pilot emergency egress handle.
AH-64 Apache

Cockpit only --- The Apache also has a canopy jettison system that expels the four acrylic panels on the sides of the pilot and CPG stations. The Apache however, has three canopy jettison handles. One is on the upper left corner of the pilot's instrument panel. A second is at the upper left corner of the CPG panel. And the third is the external ground crew handle located on the front of the aircraft, under a quick-release panel directly forward of the CPG's windshield as shown in Figures 18 through 23. Like the Cobra, the Apache system is based on an arming/firing handle, a primer/initiator, and a detonation cord around the periphery of the side panels. The operating instructions again are directly on the jettison handles. The system is armed by rotating the canopy jettison handle 90 degrees left or right, which then uncovers the word ARMED on both sides of the handle. The system then is activated by pushing the jettison handle in, detonating the primer/initiator within the handle. The system is explained very well in chapter 2 of the operator's manual. The emergency egress procedures are in chapter 9.
Figure 21. AH-64 pilot emergency egress handle.

Figure 22. AH-64 ground crew emergency egress handle.
Cockpit --- The cockpit door emergency jettison handles are located on the inside of the door frames just above the upper hinges. The yellow handles are directly above the emergency exit labels on the door frame as shown in Figures 24 through 26. Pulling aft on the handle with a force of 15-25 lbs. pulls pins on both hinges, allows the hinges to separate, and internal springs then push the door out and away from the aircraft. The handle was difficult to pull aft if there was pressure on the handle towards the center of the cockpit while pulling. We found the end of a mounting bolt restricted the rotation of this lever. This easily was compensated for by applying slight outward pressure on the handle while pulling aft. The armor plating opens easily and quickly.

Figure 24. OH-58 cockpit area.

Figure 25. OH-58 cockpit emergency egress handles.
with the outside hand and is not an obsta-
cle while exiting the aircraft. However, if
for some reason, i.e., hard landing, the
armor should become stuck, the egress
area would be reduced substantially. The
operator’s manual has good figures of the
emergency jettison handles and has con-
cise and simple operating instructions in
chapter 9. Also, it is important to note in
this aircraft the cockpit emergency handles
are in a good location to be utilized as
hand rests. The operator’s manual has a
warning in chapter 2 that this may result
in inadvertent jettisoning of cockpit doors.

Cabin — The cabin emergency jet-
tison handles are located on the aircraft
frame between the cockpit and cabin
doors. The handles are yellow and black
striped with instructions on the frame im-
mediately below them as shown in Figures
26 through 28. They operate in a similar
fashion and equally as effectively as the
cockpit jettison system. The differences is
that the cabin handle must be pushed for-
ward and the force required is 25-30 lbs.
The door then is easily popped off with
the assistance of springs, opening a large
egress area. It should be pointed out that
if the passenger in the rear is restricted by
their inertial reel seat restraint, they may
have difficulty reaching the emergency
handle because of the distance.

Figure 26. OH-58 cabin area.

Figure 27. OH-58 cabin
emergency
egress handles.
must be taken to prevent accidental jettisoning. The system also may be activated by outside emergency handles located directly below and aft of the cockpit doors. To operate, the handle first must be extended from the aircraft, then turned

Figure 30. CH-47 cockpit emergency egress handles.

while pushing in the trigger button. The instructions for this procedure are painted on the side of the aircraft. When this technique is used, the bottom of the door comes out first. The person operating the exterior handle should be aware of, and avoid the falling door. The force required to turn either handle is between 35 and 40 lbs. With the door off, there is ample room to exit the aircraft. The operator’s manual contains ample pictures of the emergency escapes in chapter 9 as shown in Figure 31.

Cabin --- Emergency egress from the cargo area of a Chinook is accomplished by jettisoning the windows, the
emergency exit on the ramp shell, the shell itself, or exiting through the cargo hook viewing hatch. The windows are jet-tisoned by pulling a yellow strap hanging from each window as shown in Figure 32. The strap is connected to a seal that runs completely around the window. Pulling the strap away breaks the entire seal and the window then can be pushed out. In addition to the window, a square panel around the window comes out with the front exits on either side, and the exit located on the ramp shell. Adequate instructions for operating these emergency exits are located near the exits and in chapter 9 of the operator’s manual as shown in Figures 34 and 35.

Figure 31. CH-47 cabin area emergency egress door strap.

Figure 32. CH-47 cabin area emergency egress window straps.

Figure 33. CH-47 cabin area emergency egress ramp.
Conclusions

There is no specific standardized method to describe emergency egress procedures in U.S. Army helicopters. The procedures are covered in chapters 2 and 9 of each operator’s manual, but not necessarily in the same sections in every manual. Each aircraft has a slightly different mechanism or technique for initiating the egress process. These different procedures are displayed in or on the aircraft in strategic locations to facilitate proper usage. It is critical that pilots and passengers familiarize themselves with each aircraft. A crew and passenger briefing is required. Each helicopter’s operator’s manual has a preflight check list, including the emergency egress procedures.

The standard aircraft exit restrictions from the cockpit are: the collective (left side only), the cyclic, and protective armor plating if installed. Under normal egress procedures, the collective and cyclic are not very restrictive, the UH-60 collective is even collapsible. However, any time the protective armor plating is used and is difficult to retract, there is the potential for a substantial reduction in the size of the egress opening. The UH-1 Huey is an example.

During any emergency, helmet visors should be down; this is important especially during an emergency egress.

Pilots and crew members should feel safe and confident they will be able to egress from an aircraft in case of a mishap. However, they need to remember that knowledge of the proper egress procedures for the specific aircraft being flown is essential for an expeditious egress. Also, it should be noted that an egress or survival knife always can be used to exit an aircraft as a last resort.
References

Operator's manual, Army model AH-64A helicopters, TM 55-1520-238-10, 28 Jun 84.

Appendix A.
Diagrams.
Figure 3. UH-1 cockpit diagram.
Figure 4. UH-1 cabin area.

1. First aid kit (4) (Left side not shown)
2. Cabin door window emergency release handle (Left side not shown)
3. Fire extinguisher (1)
4. Crew door jettison handle (Left side not shown)
Figure 9. UH-60 cockpit diagram.
CABIN DOOR
(SAME FOR RIGHT SIDE)

Figure 12. UH-60 cabin emergency exits.
Figure 17. AH-1 cockpit emergency exits.
Figure 23. AH-64 ground crew emergency egress handles.
Figure 28. OH-58 cabin emergency egress handles.
Figure 34. CH-47 cockpit and cabin emergency exits.
Open the ramp, using emergency utility pressure, as follows:

1. Be sure the RAMP switch on the cockpit HYDRAULIC panel is at ON position.
2. Rotate the EMERGENCY UTIL PRESS valve knob to OPEN.
3. Operate the ramp controls to open the ramp.

Figure 35. CH-47 cabin area and ramp emergency exits.
Figure 36. UH-1 Huey schematic showing dimensions of egress areas.
Figure 37. UH-60 Black Hawk schematic showing dimensions of egress areas.
Figure 38. AH-1 Cobra schematic showing dimensions of egress areas.
Figure 39. AH-64 Apache schematic showing dimensions of egress areas.
Figure 40. OH-58 Kiowa schematic showing dimensions of egress areas.
Figure 41. CH-47 Chinook schematic showing dimensions of egress areas.