DEVELOPMENT OF THE SWINE AS A LARGE ANIMAL MODEL FOR NOISE RESEARCH

By
Michael Ettinger
Dennis L. Curd
James H. Patterson, Jr.

SENSORY RESEARCH DIVISION

U.S. ARMY AEROMEDICAL RESEARCH LABORATORY
FORT RUCKER, ALABAMA 36362
May 1983
NOTICE

Qualified Requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of Address

Organizations receiving reports from the US Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Animal Use

In conducting the research described in this report, the investigators adhered to the "Guide for Laboratory Animal Facilities and Care," as promulgated by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences-National Research Council.

Reviewed:

BRUCE C. LEIBRECHT, Ph.D., MAJ, MSC
Director, Sensory Research Division

Released for Publication:

ROGER W. WILEY, LTC, MSC
Chairman, Scientific Review Committee

DUDLEY R. PRICE
Colonel, MC, SFS
Commanding
Development of the Swine as a Large Animal Model for Noise Research

AUTHOR(s):
Michael Ettinger, Dennis L. Curd, James H. Patterson, Jr.

PERFORMING ORGANIZATION NAME AND ADDRESS
Sensory Research Division
US Army Aeromedical Research Laboratory
Fort Rucker, AL 36362

CONTRACT OR GRANT NUMBER(S):

REPORT DATE:
May 1983

NUMBER OF PAGES:
26

DISTRIBUTION STATEMENT:
Approved for public release; distribution unlimited.

KEY WORDS:
Animal Audiometry
Hearing
Animal Learning
Acoustics

ABSTRACT:
(Continued on reverse side if necessary and identify by block number)
This report describes an attempt to develop the swine as a large animal model to be used in research on noise induced hearing loss. Animals were trained to perform in a "yes-no" signal detection paradigm for heat as a positive reinforcement. Results indicate that the animals can learn this task; however, the method failed to produce an audiogram. This was attributed to a failure to induce an adequate motivational level in the subjects.
ACKNOWLEDGMENTS

The authors would like to thank L. A. Alford and P. L. Burns for their fine technical assistance in constructing the test cage. We also wish to acknowledge the highly skillful veterinary support from LTC F. E. Chapple, III for surgical assistance and animal care.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>4</td>
</tr>
<tr>
<td>List of Figures</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Method</td>
<td>7</td>
</tr>
<tr>
<td>Subjects</td>
<td>7</td>
</tr>
<tr>
<td>Apparatus</td>
<td>7</td>
</tr>
<tr>
<td>Procedure</td>
<td>10</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>13</td>
</tr>
<tr>
<td>Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>Recommendations</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>Appendix A. List of Equipment Manufacturers</td>
<td>21</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mean, Median, and Range in dB SPL for the 48 Calibration Values of Each Frequency</td>
</tr>
<tr>
<td>2</td>
<td>Ambient Noise Levels in the Test Chamber With the Air Conditioner and All Test Equipment Running</td>
</tr>
<tr>
<td>3</td>
<td>Number of Reinforced Responses for Sessions Three through Seven</td>
</tr>
<tr>
<td>4</td>
<td>Percent Correct Responding During Last Eight Sessions of Second Stage Training</td>
</tr>
<tr>
<td>5</td>
<td>Summary of Percent Correct for the First 12 Sessions in the Third Stage Training</td>
</tr>
<tr>
<td>6</td>
<td>Results from Analyzed Data to Produce d' Values</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interior of test room showing test cage, reinforcement lights, and speaker</td>
</tr>
<tr>
<td>2</td>
<td>Response panel showing animal during observing response</td>
</tr>
<tr>
<td>3</td>
<td>Schematic diagram of relative signal levels across trials</td>
</tr>
</tbody>
</table>
INTRODUCTION

This report is a summary of an exploratory effort to identify a large animal suitable for studies of noise induced hearing loss. Animal models are used extensively in studies of the effects of both continuous and impulsive noise to establish a data base relating noise parameters to measures of auditory injury. At present, the chinchilla is the primary animal model used at the United States Army Aeromedical Research Laboratory (USAARL). A large data base relating parameters of impulse noise to threshold shift and sensory cell destruction is accumulating under the blast overpressure research project. To facilitate the eventual extrapolation to humans, the data being produced using chinchillas must be augmented by data from other species. In addition, the chinchilla has several shortcomings as the only animal model for this project. It is not suitable for field studies since it is intolerant of heat and high intensity blast. For impulse noise at levels above 160 dB, chinchillas suffer perforations of the tympanic membrane and middle ear disruptions (Eames, et. al., 1975).

The establishment of an animal model for noise research requires the development of procedures for determining the audiogram of the animal and controlling the animal during the exposures. Additional procedures must be developed to determine the transmission properties of the outer and middle ear, surgical destruction of one inner ear, and extraction of the inner ears for histological examination. Further, the animal selected should have physiological similarities to the human auditory system, and have ears for which hearing protection can be adapted.

The first animal selected for evaluation as a potential large animal model was the swine. This choice was made because swine are commonly used medical models for nonauditory physiology, having many similarities to man (Mount and Ingram, 1971; Bustad and McClellan, 1966). Swine also are durable creatures and should be able to withstand environmental extremes encountered in field testing (e.g., exposure to artillery blast waves on a firing range). In addition, swine are relatively inexpensive and easily maintained, which would permit the use of the large number of subjects required in noise research. While no audiogram has been published, swine are regarded to be "auditory animals" relying heavily on auditory cues in their social behavior (Hafez and Signore, 1969). These factors suggest that swine would make a reasonable candidate for a large animal model.

The development of an audiometric procedure for use with animals involves training the animal to make an observable response to acoustic stimuli. Swine are reported to be easily trained in a variety of learning paradigms (Hafez and Signore, 1969). They have been successfully trained with both classical and instrumental conditioning (Kratzer, 1971).

Pavlov (from Marcuse and Moore, 1944) attempted to use pigs as research subjects but found them uncooperative and disruptive and concluded
that "all pigs are hysterical." Moore and Marcuse (1945) were able to
train pigs in a Pavlovian-type paradigm to elicit salivary, cardiac, and
motor responses with little difficulty. Liddell and Anderson (1931) found
that pigs developed conditioned foreleg reflexes earlier than goats, sheep,
or rabbits. The behavioral problems encountered by Pavlov have been
experienced by many experimenters, although they may have been of a lesser
extent. Marcuse and Moore (1944) studied this behavior and labeled it
"tantrum behavior." Restraining the animals in a Pavlovian frame led them
to the conclusion that restriction plays an important part in producing
excitatory behavior. Because of its restrictive nature and the subsequent
behavioral problems associated with its use on pigs, classical conditioning
was deemed unsuitable for use in an audiometric procedure.

Instrumental learning procedures have been used by a number of in-
vestigators. Pigs have been taught to avoid shock by jumping a barrier in
response to a tone (Karas, Willham and Cox, 1962; Baldwin and Stephens,
1973). Marcuse and Moore (1944) trained two sows to lift a box lid to ob-
tain a food reward in an auditory frequency discrimination task. In a
series of studies, pigs were conditioned to press a panel with their snouts
in order to receive a short burst of radiant heat in a cold environment
(Baldwin and Ingram, 1967; Baldwin and Ingram, 1968a; Ingram, Walters and
Legge, 1975; Baldwin and Ingram, 1968b).

Jenkins (1979) attempted to determine an audiogram for miniature swine
using a panel press for food reinforcement. He used a two-choice paradigm
in which the animal was trained to press one response panel when a "tone"
trial was presented and to press a second panel when a "no tone" trial
was presented. The animal initiated a trial by making an observing re-
response. A pellet of dry food was given for correct responses. The animal
quickly learned this task. However, the thresholds obtained by Jenkins
appeared to be elevated. He discussed several possible causes for the
high thresholds. The two paramount problems were: noise generated by the
animal, especially mastication noises associated with the food reinforce-
ment, and nonuniformity of the sound field produced by the test apparatus.
Using food reinforcement appears to be inconsistent with threshold deter-
mination since the mastication noise will tend to mask threshold level
signals.

The use of heat appears to be a promising alternative as a reinforcer
for developing a behavioral procedure for determining the audiogram of a
pig. Young swine will readily learn to operate a switch for heat reward
(Baldwin and Ingram, 1967). Only young animals (preferably 2-4 months) can
be used for these studies because of the increased tissue insulation
associated with their rapid growth and the subsequent diminishing of cold
sensitivity (Mount, 1968). The rate of response is affected by such factors
as ambient temperature, amount of heat reinforcement, and level of food intake.
Swine have been found to emit high rates of panel pressing in the temperature
range of -10°C to 15°C (Baldwin and Ingram, 1967). The amount of heat de-
livered may be controlled by the distance of the animal from the source and
the duration of reinforcement. By altering the height of a bank of lamps
suspended above a pig's back, Ingram (1975) found that distance was an important determinant of response rate. Baldwin and Ingram (1968a) studied magnitude of reinforcement by comparing 6- and 12-sec reinforcements with 6 or 12 250w-lamp arrays. They concluded the duration of reinforcement influenced the response rates while the number of lamps did not. It also has been found that pigs on a lower level of food intake (400 g/day) respond more often than animals fed on a higher level (900 g/day) (Baldwin and Ingram, 1968b). Pigs will work steadily for long periods when these factors are arranged properly.

The objectives of the present study were to develop an audiometric procedure for swine based on heat reinforcement and to explore surgical procedures for monauralization and extraction of the inner ears.

METHOD

SUBJECTS

Two male pigs of the species Sus scrofa were used in the experiment. They were of mixed breed, 6-9 weeks old, and approximately 30 pounds at the beginning of the study. Both animals had been examined by the laboratory veterinarian and were in excellent physical condition. The pigs were housed singly and fed 600 g/day of Pig Starter Pellets in two rations, one before testing and another immediately afterwards. Water was available to the animals except during testing.

APPARATUS

All testing was conducted in a double-walled sound chamber (IAC, Model 1200 Series). Located in the center of the room was a test cage constructed of heavy hardware cloth siding with steel framework (see Figure 1, page 7). The cage measured 122 cm long, 91 cm high, 61 cm wide, and was elevated 20 cm above the sound room floor by a wooden stand. Rubber matting covered the floor of the test cage to muffle the animal's movements. The response panel at the front of the cage was made of steel grid, with three circular holes situated on a horizontal plane 23 cm above the cage floor. Figure 2 shows this response panel. The holes were 8 cm in diameter and 15 cm between centers. A miniature lamp (General Electric (GE) No. 222) and photocell were mounted on opposite sides of each hole for detecting the animal's responses. Stimulus lights (GE No. 1819) with plastic diffusers were placed 10 cm above the outer two holes.

Two banks of four 250w GE infrared heat lamps, both mounted in 33 cm x 33 cm arrays, were positioned 10 cm from each side of the cage. Pure tone signals were presented by a cabinet-mounted, 15-inch coaxial speaker (Altec 4188) directly facing the front of the cage. The speaker was 91 cm from
FIGURE 1. Interior of test room showing test cage, reinforcement lights, and speaker.

the response panel and had a stimulus light (GE No. 1819) suspended 36 cm from the top of the speaker. A 9-inch (23 cm) fan (IMC, Model No. 12) was placed 15 cm from the rear of the cage and raised to cage floor level with a stand. An Altec microphone (D60L) was hung 20 cm from the top of the response panel and was wired to an Altec Model 1598A monitor amplifier outside the sound chamber. All experimentation was observed on closed circuit television.

Both trial sequencing and data acquisition were controlled by Coulbourn Instruments (CI) solid state logic modules. Acoustic signals were generated by a Fluke Oscillator (Model 6010A) and gated with an audio gate (CI, S84-04). Signal level was adjusted with a programmable attenuator (CI, S85-08) and a Hewlett-Packard attenuator (Model 350D). The signal then was sent through an Altec amplifier (Model 1594B) and a final level adjustment made with a Grason Stadler Attenuator (Model 1293). A Hewlett-Packard Voltmeter (Model 3400A) was used for calibrating voltages during testing.
Sound field calibration was done with a Brüel and Kjaer (B&K) ½-inch condenser microphone (Type 4133) powered by a Microphone Power Supply (B&K, Type 2804). A measuring amplifier (B&K, Type 26/6) was used for reading sound levels, and a Nicolet 440A spectrum analyzer determined distortion products. The sound field was calibrated by measuring the sound pressure level of pure tones at each test frequency over a region inside the test cage which approximated the animal’s head position. This region contained three vertical planes measuring 22.8 cm by 22.8 cm and located from 7.6 cm to 22.8 cm from the response panel into the cage. Each plane consisted of 16 measurement points (4x4) with 7.6 cm between points. The planes were laterally centered upon the center response hole and ranged from the bottom of the response holes to 15.2 cm above them. Table 1 (page 10) shows the mean, median, and range for the 48 values of each frequency for maximum signal level achievable with the audio circuit as described.

The sound chamber was cooled by blowing cold air from an 18,000 BTU window air conditioner through the ventilation system of the room. Custom-built duct work joined the air conditioning unit and ventilation ports.
TABLE 1
MEAN, MEDIAN AND RANGE IN dB SPL FOR THE 48 CALIBRATION VALUES OF EACH FREQUENCY

<table>
<thead>
<tr>
<th>FREQ (in kHz)</th>
<th>X</th>
<th>M</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>100.70</td>
<td>100.55</td>
<td>9.5</td>
</tr>
<tr>
<td>1.0</td>
<td>96.70</td>
<td>97.50</td>
<td>9.7</td>
</tr>
<tr>
<td>.500</td>
<td>94.93</td>
<td>95.40</td>
<td>11.1</td>
</tr>
<tr>
<td>2.0</td>
<td>106.83</td>
<td>106.70</td>
<td>6.0</td>
</tr>
<tr>
<td>.125</td>
<td>98.97</td>
<td>99.20</td>
<td>2.2</td>
</tr>
<tr>
<td>4.0</td>
<td>91.00</td>
<td>91.75</td>
<td>12.6</td>
</tr>
<tr>
<td>8.0</td>
<td>76.17</td>
<td>77.10</td>
<td>15.4</td>
</tr>
<tr>
<td>.250</td>
<td>95.70</td>
<td>95.80</td>
<td>4.6</td>
</tr>
<tr>
<td>5.7</td>
<td>87.47</td>
<td>87.35</td>
<td>14.2</td>
</tr>
<tr>
<td>2.8</td>
<td>100.67</td>
<td>101.05</td>
<td>6.6</td>
</tr>
</tbody>
</table>

The temperature in the test chamber was monitored with a mercury thermometer suspended near the front of the speaker. Ambient noise levels in the test chamber with the air conditioner and all test equipment running are given in Table 2 (page 11).

PROCEDURE

The training procedure was designed to bring the animal's behavior under the control of an auditory stimulus, a 500-msec sinusoidal signal (tone). The final paradigm was patterned after a "yes-no" signal detection task (Green and Swets, 1966). Figure 3 (page 12) shows a schematic diagram of the major events within a trial. In each trial the animal was required to make one response if a signal was presented and a different response if no signal was presented. A trial was initiated by lighting the stimulus light located on the front of the speaker. After the appearance of the stimulus light, the subject was required to emit an observing response. The response was the insertion of the snout into the center response hole. After the observing response was held for 500 msec the stimulus light was turned off and a 500-msec observation interval occurred. During the
observation interval the signal was presented or not presented at random. The signal occurred on approximately 50% of the trials. After the observation interval, the subject had to make a response before the trial sequence would proceed. A correct response on a signal trial was defined to be the insertion of the animal's snout in the left response hole. A correct response on a no signal trial was the insertion of the snout in the right response hole. After the response was made, the feedback interval was initiated. If a correct response was made, the heat lamps were turned on for 2.5 seconds. If an error occurred, a nonheat time-out of 2.5 seconds was given. After the feedback interval, a 3-second time-out was given as minimum inter-trial interval. Any response during the feedback and inter-trial intervals was ignored. The next trial was then initiated by the reappearance of the stimulus light.

Three distinct stages of training were used to teach this paradigm to the subjects. In the first stage, the animal was trained to emit the observing response. The pig was placed in the test cage at an ambient room temperature of 10°C±2°C. During this stage of training, the subject was only required to hold the observing response for 500 msec to receive the heat reinforcement. A 3-second time-out followed the reinforcement.

TABLE 2

<table>
<thead>
<tr>
<th>Test Frequencies in Hertz</th>
<th>31.5</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1K</th>
<th>2K</th>
<th>4K</th>
<th>8K</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB</td>
<td>44.2</td>
<td>35.0</td>
<td>27.8</td>
<td>19.8</td>
<td>13.2</td>
<td>11.0</td>
<td>10.0</td>
<td>10.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>
and a new trial started with the onset of the stimulus light. Responses made when the heat lamps were on or during the time-out were not reinforced. Similarly, any response that carried over to the next trial interval would keep the stimulus light off, thus delaying a new trial until the pig pulled its snout out of the response hole. During the first few training sessions, the subject's attention was drawn to the response hole with food and vocal encouragement by the experimenter. The observing response was considered to be learned when the number of reinforcements were greater than 120 for a 45-minute session. Except where noted, sessions were given once per day at the same time of day ± 1 hour.

In the second stage, the full trial sequence was implemented. The observing response was no longer reinforced. The reinforcement was contingent on the response to the observation interval. During the response interval a correlated visual cue, consisting of a light panel being illuminated above the correct response hole, was used. This correlated visual cue was the only difference between the second and the third stages. The transition to the third stage was accomplished by reducing the illumination of the cue lights in four steps. The fourth step eliminated the visual cue.
During the last two training stages a block of 120 trials was presented, 12 trials at each of 10 frequencies in stage two and 120 trials at 1000 Hz in stage three. The signal level was controlled by the programmable attenuator to produce descending-ascending staircases of four levels. On each trial the signal level changed by 8 dB. Figure 3 (page 12) shows a schematic diagram of signal levels across trials.

During the second and third stages of training the signal levels were selected so that the lowest level in the staircase at each frequency was clearly audible to the experimenter. Late in the third stage training these levels were reduced by 16 dB.

On each trial the subject's response was recorded in one of four categories: (1) signal presented - left response (hit); (2) signal presented - right response (miss); (3) no signal presented - left response (false alarm); and (4) no signal presented - right response (correct rejection). Four counters were used to record these data for each signal level. This form of data recording permits the calculation of percent correct responding as well as the signal detection index, d' (Elliott, 1964; Green and Swets, 1966).

RESULTS AND DISCUSSION

The first stage training (observing response) for the first subject, "Joe," proceeded rapidly. During the first two sessions the experimenter was present in the room and the total number of reinforced responses was less than 120 in 45 minutes. In the third session the subject emitted 187 reinforced observing responses with no assistance from the experimenter. Table 3 (page 14) gives the number of reinforced responses for sessions 3 through 7. Data for sessions 1 and 2 are omitted since they were contaminated with experimenter-induced responses.

While the response rate for session 4 appears low, most of the responses were made during the last 35 minutes. This suggested that an adaptation period during which the subject would cool down might facilitate the responding. Therefore, the procedure was modified to include an initial adaptation period of 15 minutes for all sessions throughout the remainder of the experiment. During the adaptation period, the subject was kept in the transport cage in the cold environment and was moved to the test cage to begin the test session.

After seven sessions of training on the observing response, Joe was started on the second stage of training using tones and visual cues. During the first seven sessions of the tone training, response rates were low resulting in incomplete blocks of data. In addition, experimenter-assisted responses contaminated the percentage of correct responses during
TABLE 3
NUMBER OF REINFORCED RESPONSES FOR SESSIONS THREE THROUGH SEVEN

<table>
<thead>
<tr>
<th>Session No.</th>
<th>Time</th>
<th>Session Time/Minutes</th>
<th>Reinforcements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A.M.</td>
<td>45</td>
<td>187</td>
</tr>
<tr>
<td>4</td>
<td>P.M.</td>
<td>70</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>A.M.</td>
<td>45</td>
<td>195</td>
</tr>
<tr>
<td>6</td>
<td>P.M.</td>
<td>45</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>P.M.</td>
<td>45</td>
<td>172</td>
</tr>
</tbody>
</table>

TABLE 4
PERCENT CORRECT RESPONDING DURING LAST EIGHT SESSIONS OF SECOND STAGE TRAINING

<table>
<thead>
<tr>
<th>Session No.</th>
<th>P(C)</th>
<th>No. of Trials</th>
<th>Cue Light Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>89.1</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>84.9</td>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>83.9</td>
<td>118</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>94.1</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>90.3</td>
<td>62</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>82.0</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>63.8</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>70.8</td>
<td>120</td>
<td>1</td>
</tr>
</tbody>
</table>
these sessions. By the eighth session of tone training, the subject com-
pleted a 120-trial block without experimenter intervention. During this
phase of training signals at all levels and all frequencies were clearly
audible. Therefore, all of the trials on each session were pooled to give
an overall percent correct as a measure of how well Joe had learned the task.
Table 4 (page 14) contains a summary of the percent correct responses for
the last eight sessions of the second stage training. By session 12, the
subject was showing signs of low motivation. He spent inordinate amounts of
time at the back of the test cage or lying down. In session 13, the blower
fan was employed to induce a "wind chill factor" in an effort to increase
motivation. This proved to be disruptive at first as the subject would show
signs of agitation. After a while, the subject settled down and the fan
could be used to reduce the amount of time spent in competing behaviors. By
sessions 11 and 12 a fairly high level of performance had been achieved.
The introduction of the fan and the reduction of the light cues contributed
to the reduction in performance after session 12. It is possible the
use of cue lights was counterproductive in that relearning the auditory
task may have occurred after they were phased out.

By the time the third stage of training was started, Joe was approxi-
mately 13 weeks old. Since training was taking longer than anticipated, it
was decided to abandon the attempt to obtain a full audiogram and concen-
trate on obtaining a threshold at one frequency at a time. The first fre-
quency to be tested in isolation was 1000 Hz. Throughout the third stage
training all trials in a session used the same frequency signal.

Table 5 (page 16) contains a summary of the percent correct for the
first 12 sessions in the third stage training. In an effort to run two
sessions on the same day, sessions 5 and 6 were given without removing the
subject from the test cage. Similarly, sessions 8 and 9 were given without
interruption. As shown by the low number of trials in sessions 6 and 9, this
procedure was not successful.

For those sessions on which complete blocks of trials were obtained,
the data were analyzed to produce d' values at each signal level. These
results are shown in Table 6 (page 16). Examination of Tables 5 and 6
reveals that over sessions the performance shows an unacceptably high amount
of variability and the relationship between performance and signal level does
not display the rapid reduction characteristic of "threshold." These results
are probably due to inadequate motivation. In session 13 the subject rooted
up the floor mat and ceased responding after 59 trials. During session 14
the subject rooted up the floor mat and continued to push it around the cage
without completing any trials. As a result no more training sessions were
attempted.

The second subject, "Steve," started training after all sessions with
Joe were complete. An adaptation period was utilized starting with the first
session. In all other respects, Steve was treated the same as Joe. However,
after four sessions Steve had failed to meet the 120 reinforced response
criterion for rate of emitting the observing response. Observation of the
TABLE 5

SUMMARY OF PERCENT CORRECT FOR THE FIRST 12 SESSIONS IN THE THIRD STAGE TRAINING

<table>
<thead>
<tr>
<th>Session No.</th>
<th>Percent Correct</th>
<th>70 dB</th>
<th>62 dB</th>
<th>54 dB</th>
<th>46 dB</th>
<th>38 dB</th>
<th>30 dB</th>
<th>Total No. of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90.0</td>
<td>68.4</td>
<td>73.6</td>
<td>44.4</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>95.0</td>
<td>75.0</td>
<td>72.5</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>58.0</td>
<td>72.0</td>
<td>70.8</td>
<td>75.0</td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>70.0</td>
<td>80.0</td>
<td>82.5</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>85.0</td>
<td>77.5</td>
<td>67.5</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>85.7</td>
<td>76.9</td>
<td>57.1</td>
<td>75.0</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>85.0</td>
<td>75.0</td>
<td>72.5</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>85.0</td>
<td>90.0</td>
<td>80.0</td>
<td>90.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>80.0</td>
<td>62.5</td>
<td>37.5</td>
<td>50.0</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>90.0</td>
<td>80.0</td>
<td>80.0</td>
<td>70.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>11</td>
<td>85.0</td>
<td>80.0</td>
<td>77.5</td>
<td>75.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>12</td>
<td>85.0</td>
<td>87.5</td>
<td>90.0</td>
<td>85.0</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

* Average was calculated for 8 complete sessions only.

TABLE 6

RESULTS FROM ANALYZED DATA TO PRODUCE D' VALUES

<table>
<thead>
<tr>
<th>Session No.</th>
<th>d' Values for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70 dB</td>
</tr>
<tr>
<td>2</td>
<td>3.55+</td>
</tr>
<tr>
<td>4</td>
<td>.86</td>
</tr>
<tr>
<td>5</td>
<td>2.65+</td>
</tr>
<tr>
<td>7</td>
<td>2.76+</td>
</tr>
<tr>
<td>8</td>
<td>2.12</td>
</tr>
<tr>
<td>10</td>
<td>3.09+</td>
</tr>
<tr>
<td>11</td>
<td>2.11</td>
</tr>
<tr>
<td>12</td>
<td>2.08</td>
</tr>
</tbody>
</table>

* d' are indeterminate due to either zero misses or zero false alarms.
animal indicated that he had little interest in heat as a reinforcer. Steve could be easily enticed to make an observing response for a food pellet (also producing heat), but he did not show the subtle signs of reinforcement from the heat as Joe had shown. Steve would disregard the onset of the heat lamps and return to competing behaviors such as rooting, teething, and escape attempts from the test cage. During the later sessions he would emit occasional observing responses which were interspersed with long periods of these competing behaviors. Steve's overall behavior indicated that he had learned how to produce heat but simply was not motivated to do so.

This difference between the two subjects may be partially attributable to differences in the home cage temperatures. The home cages were outdoors where temperatures depended upon prevailing weather patterns. When training with Joe was initiated, the home cage temperatures would drop to 5°C at night and were usually below 12°C at the time he was brought into the test room. The training of Steve was begun later in the spring when outside ambient temperatures did not go below 20°C and were typically above 25°C when Steve was brought into the test room. It was believed that Steve's transfer from a warm environment (above 25°C) to a cold environment (10°C) resulted in an insufficient motivational level for producing high response rates (over 120) for heat reinforcement. Because of his failure to meet the required rates of responding in the initial training, audiometric training with Steve was discontinued.

After audiometric training had proceeded as far as possible, both subjects were used in an attempt to develop a surgical monauralization procedure. In both cases, the attempt at monauralization was unsuccessful. The external ear canal was found to be small, 2-4 mm in diameter, and long, 25 to 50 mm. This made the middle ear very difficult to open surgically.

CONCLUSIONS

A positive reinforcement paradigm based on heat as the reinforcer can be used to train swine in a yes-no signal detection task. The motivation level of the subject as influenced by the home cage ambient temperature and the test cage ambient temperature may be critical to the success of this procedure. Monauralization of the swine cannot be easily accomplished using standard surgical procedures. The development of the swine as a large animal model for noise research remains incomplete due to the failure to determine a valid audiogram and the failure to develop an acceptable monauralization procedure.
RECOMMENDATIONS

A procedure for monauralization should be developed before additional efforts to develop an audiometric procedure are undertaken. Alternatives to the positive reinforcement procedure using heat should be considered. If heat reinforcement is used, the test chamber should be equipped with low temperature refrigeration to permit testing in temperatures as low as -10°C. Consideration should be given to controlling the ambient temperature in the home cage.
REFERENCES

Mount, L. E. 1968. The Climatic Physiology of the Pig. London: Edward Arnold.

APPENDIX A

LIST OF EQUIPMENT MANUFACTURERS

Altec Lansing Corporation
1515 S. Manchester Avenue
Anaheim, California 92803

Bruel and Kjaer Instruments, Inc.
9047-A Gaither Road
Gaithersburg, MD 20760

Coulborn Instruments (CI)
Box 2557
Lehigh Valley, PA 18001

John Fluke Manufacturing Company, Inc.
P.O. Box 43210
Mountlake Terrace, Washington 98043

General Electric Company
P.O. Box 114
Gainsville, FL 32602

Grason-Stadler
56 Winthrop Street
Concord, MA 01742

Hewlett-Packard
P.O. Box 28234
450 Interstate North
Atlanta, Georgia 30328

Industrial Acoustics Company, Inc.
380 Southern Boulevard
Bronx, New York 10454

IMC Magnetics Corporation
Rochester, NH 14602

Nicolet Instrument Corporation
P.O. Box 4288
5225 Verona Road
Madison, WI 53711