
USAARL Report No. 2000-08

Preliminary Design of an Image Quality Tester
for

Helmet-Mounted Displays

by

Sheng-Jen Hsieh

Texas A&M University

and

Clarence E. Rash

Aircrew Health and Performance Division

and

Thomas H. Harding
Howard H. Beasley

John S. Martin

UES, Inc.

November 1999

Approved for public release, distribution unlimited.

U.S. Army Aeromedical Research Laboratory
Fort Rucker, Alabama 36362-0577

Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron
Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other
person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic
mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or decision, unless so designated by
other official documentation. Citation of trade names in this report does not constitute an official
Department of the Army endorsement or approval of the use of such commercial items.

detection. A software prototype, including modules for image capture, image analysis, interpretation, and
user manuals, was developed. Finally, a concept hardware package design proposed. This design
incorporates a notebook computer with a flat panel display to interface with the camera and software
prototype; and incorporates fixtures for the HMD, camera, computer, and power supply. This design will
allow the tester to be used in the field.

iii

Table of contents
Page

Introduction . 1

Functionality and operating process . 2

Methodology . 3

Image capture hardware specification . 4

Test pattern features investigation . 6

Software prototype design . 9

Image capture module . 9

Image analysis and interpretation module . 11

Algorithm design . 11

Testing and validation . 13

Hardware package design . 15

Conclusions and future directions . 15

References . 18

Appendix A. List of manufacturers . 19

Appendix B. Software prototype program . 20

List of figures

1. The IHU of the AH-64 IHADSS . 1

2. The IHADSS HDU . 2

3. Display size . 3

4. Test pattern from the IHADSS HMD . 3

iv

Table of contents (continued)
List of figures (continued)

Page

 5. Flow chart for the HMD prototype tester operation . 3

 6. Experimental setup for camera sensitivity analysis . 4

 7. Sampling locations on the test pattern . 4

 8. Plot of photometer and CCD camera data . 5

 9. Setup for test pattern measurement . 6

10. Test pattern design based on measurement results . 7

11. Replicated test pattern image . 7

12. Measurement of luminance of the center lines . 8

13. Center lines measurement with varied focus . 8

14. Designed test pattern with focus on the center lines . 9

15. Opening screen of prototype software . 10

16. Image capture module . 10

17. Image capture component . 10

18. Image processing component . 10

19. Image analysis and interpretation module . 11

20. Tilted test pattern binary images from image analysis module . 14

21. Overall testing results of an HMD . 14

22. Tilted test pattern before (left) and after (right) Sober edge detection 15

23. Investigation of CCD image capture arrangement . 16

24. CAD concept of prototype hardware design . 16

v

Table of contents (continued)
List of tables

Page

 Measured data and correlation coefficient from photometer and CCD camera 5

1

 Figure 1. The IHU of the AH-64 IHADSS.

Introduction

Helmet-mounted displays (HMDs) are a gateway to the pilot for viewing pilotage and fire
control imagery. In Army aviation, the AH-64 Apache helicopter uses an HMD system known as
the Integrated Helmet and Display Sighting System (IHADSS). The IHADSS consists of various
electronic components and a helmet/display system called the Integrated Helmet Unit (IHU). The
IHU (Figure 1) includes a helmet, visor housings with visors, miniature cathode ray tube (CRT),
and helmet display unit (HDU). The HDU serves as an optical relay device which conveys the
image formed on the CRT through a series of lenses, off a beamsplitter (called a combiner), and
into the aviator’s right eye (Figure 2). The CRT is 1 inch in diameter and uses a P-43 phosphor.
The combiner is a multilayer dichroic filter which is maximized for reflectance at the peak
emission of the P-43 phosphor.

The U.S. Army is currently developing the next generation reconnaissance aircraft, the RAH-
66 Comanche. This aircraft will incorporate an HMD which will be binocular in design. While its
final design is still in review, it will basically consist of two image sources (either miniature CRTs
or liquid crystal displays) with two sets of optics, delivering imagery to both eyes.

Currently, there is no existing image quality tester for HMD validation in the field. To
maintain system integrity and readiness, and to provide pilots with validated pilotage, navigation,
and fire control imagery, there is a need to design and construct an image quality testing tool for
the HMD. The objective of this study is to propose and test a design concept for an image quality
tester for HMD subsystems. The tester can be used as a validation tool to verify settings for
regular flight missions and for preventive maintenance tasks. The first prototype tester will be
designed for the AH-64's IHADSS HMD.

2

Figure 2. The IHADSS HDU.

Functionality and operating process

The proposed tester will allow pilots and maintenance personnel to validate the image quality of
an HMD. Basic required characteristics include (1) simple design, (2) ease of use, (3) robustness,
and (4) accuracy for operations and maintenance. The prototype should be small enough to fit into
a brief case, which would include a lap-top, image capture system, and power supply pack.

The IHADSS HMD has a monocular 30-degree vertical by 40-degree horizontal field-of-view
(FOV). Future HMDs most likely will have larger FOVs and be binocular in design. HMD
corner obscurations are generally permissible and symmetrical for the IHADSS, as illustrated in
Figure 3. Since hardware changes to the various aircraft electronics will not be allowed, image
quality validation must be performed using manufacturer built-in test patterns. The built-in test
pattern of the IHADSS HMD is used as the inspection specification on which the first tester will
be based. The test pattern shows strips of gray opposed along the vertical center lines. Each strip
contains 8 to 10 shades of gray, depending on the contrast ratio. Adjacent shades have a square
root of 2 differential of brightness. Figure 4 is a snapshot of the test pattern captured from the
IHADSS HMD. For more detailed discussion of the HMD test pattern features, see the
Honeywell, Inc. study guide (1985) and Harding et al. (1995). For testing this test pattern, the
inspection features used by the image quality tester prototype will include (1) four vertical center
lines, (2) one horizontal center line, (3) two gray shade patterns (with 8 to 10 shades), and (4) a
boundary box.

3

 Figure 3. Display size. Figure 4. Test pattern from the IHADSS

 HMD.

Based on the design objectives and inspection procedures, the tester operation procedures are as
follows: (1) the pilot adjusts the HMD settings and passes the HDU to the crew chief; (2) the crew
chief inserts the HMD into a fixture; (3) the system examines the center and horizontal line features
of the test pattern using a narrow-angle lens; (4) the system inspects the test pattern for image
displacement and/or disorientation; (5) the system examines the number of gray-shades, the focus,
luminance, and boundary lines, using a 42-degree wide-angle lens; and (6) the system generates a
final report. Figure 5 shows a flow chart for the proposed operation procedures.

Figure 5. Flow chart for HMD prototype tester operation.

Methodology

This study involved designing and testing (1) the hardware specification for image capture, (2)
the test pattern inspection features, (3) the software prototype, and finally (4) the hardware
prototype. Experiments and statistical analysis tools were applied throughout the design process.

4

Image capture hardware specifications

To determine the needed camera and lens specification for test pattern image capture,
experiments were conducted to verify the sensitivity of a candidate camera. The camera and a
Photo Research (Appendix A) model 1980 photometer were mounted using a reconfigurable
optical fixture and bench accessories and were used to capture an electronically generated gray
shade test pattern. Figure 6 illustrates the experimental setup. The luminance of the test pattern
image was registered by the charged couple device (CCD) camera (and image capture card) and
the photometer. Figure 7 shows the locations where data were sampled from the test pattern.
These data were measured from a fixed position along a horizontal line across the entire test
pattern. Three measurements were taken from each region. An observation resulting from the
experiment was that the luminances of the gray shades presented in the test pattern were not
linearly distributed between 0 and 255. The differential of luminance for adjacent shades was
greater than an approximate square root of 2. A statistical analysis was performed on these data.
Results indicated that the luminance levels measured by the photometer were consistent with data
from the camera and image capture card up to and including the 7th gray shade. It can be seen that
the CCD saturated after the 7th gray shade area. To prevent this, the aperture of the CCD would
have to be adjusted. If only the first seven gray shades are used in the analysis, correlation is 0.98.
The table and Figure 8 record the data collected from both instruments and the statistical analysis
results.

Figure 6. Experimental setup for camera sensitivity analysis.

Figure 7. Sampling locations on the test pattern.

5

Table.
Measured data and correlation coefficient from photometer and CCD camera.

Gray shade Photometer luminance readings CCD gray level readings

1 3.25 3.32 3.35 7 7 7

2 7.47 7.51 7.46 25 25 25

3 17.07 16.99 16.99 65 65 65

4 30.51 30.54 30.43 99 99 99

5 48.28 48.24 48.12 146 146 146

6 71.9 71.86 71.81 194 194 194

7 98.35 98.54 98.67 227 227 227

8 127.1 127.2 127.3 230 230 230

9 157.9 158.1 158.0 235 235 235

10 187.4 187.4 187.1 240 240 240

11 221.2 221.4 221.2 242 242 242

12 200.7 200.6 200.6 237 237 237

Luminance vs gray level (7 shades): Correlation = 0.983886; Fisher’s z = 2.406549;
Probability = 00006

Figure 8. Plot of photometer and CCD camera data.

6

In an attempt to capture the test pattern image on the IHADSS fully, several different cameras
(with standard lenses) were evaluated. However, although the full test pattern could be captured,
the details of the four vertical center lines could not be differentiated. Therefore, a decision was
made to use a narrow angle lens to zoom in on the center area of the test pattern in order to capture
the details of the center lines. HMDs are also used at night; therefore, the prototype tester--
specifically the camera--should provide good sensitivity at low luminance levels. First order
specifications for the required camera were summarized as follows:

1. Sensitivity: #0.005 lux
2. Focus: To infinity
3. Resolution: > 768 x 498 pixels
4. Focal length: ~½ inch
5. Iris: Manual
6. Fields of view: >40 (H) x 30 (V) degrees and ~5 x 3 degrees

Test pattern features investigation

An additional experiment was conducted to investigate various aspects of capturing the test
pattern. Multiple cameras were used since a single camera that met all the desired specifications
was not available at the time of this study. Aspects of interest included the size of the pattern,
number of different features, relative luminance ratios among features, spatial content of each
feature, and number of gray shades. The IHADSS HMD was mounted on the top of the optical
post, and the post was fixed on top of a round optical table controlled by a programmable position
table. The table was driven by a stepping motor with an accuracy of 1 micron (:m). The test
pattern image was projected onto a video monitor for observation. Figure 9 shows the
experimental setup. The entire test pattern image from the HMD was captured and constructed
through a series of mini steps in the horizontal and vertical directions. The overall picture was
approximately 38 x 29 degrees, which was close to the specification in the study guide
(Honeywell, Inc.,1985). The center line occupied approximately 0.5 degree out of 38 degrees.
There were two strips with 10 to 12 gray shades mirrored opposite the center lines. Figure 10
shows the structure of the IHADSS test pattern. A series of images were taken to probe the
content of each gray shade in terms of luminance. Based on the observed information, a series of
image files was constructed and used as an image profile for purposes of the software prototype
development. Figure 11 displays this replicated test pattern image.

 Figure 9. Setup for test pattern measurement.

7

Figure 10. Test pattern design based on measurement results.

 Figure 11. Replicated test pattern image.

A similar experiment was conducted to detail the center lines within the test pattern. Figure 12
shows the luminance scan measurements for the center lines. The four peaks represent the four
center lines which are spread out over 0.8 degree from valley to valley and 0.4 degree peak to
peak. The average peak width is about 0.0969 degree and the average distance between peaks is
about 0.1347 degree. Note: A measurement of 1 degree is about 485 :m in the object plane.

Another experiment was conducted to probe the state of the center lines when the HMD is in
focus and not in focus. Varied focus values of -1 to 1 diopter of CRT were applied.
Measurements of the four vertical center lines were taken. An interesting finding was, when the

8

Scan of 4 lines (0 diopter)

0

0.5

1

1.5

2

2.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Position (degrees)

L
u

m
in

an
ce

 (
fL

)

Scan of 4 Lines at with CRT focus varied

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Position (degrees)

L
u

m
in

an
ce

(f
L

)

+0.25

+0.5

+1

No Correction

- 1

- 0.5

- 0.25

A

B

HMD was in focus, the ratio of luminances between bottom to mid-peak (B) and peak to valley
(A) was close to 1. However, when the setting was not in focus, the B:A ratio was less than one.
Figure 13 documents these observations and illustrates the concept. Findings from the above
experiments, such as measurements, luminance ratios, and the content of each feature within the
test pattern, were used to create a test pattern image using graphics software. Figure 14 shows an
image of such a test pattern using a 5 X 4 degree lens to focus on the center lines of the test
pattern. In addition, the ratio of the square root of 2 luminance difference was used to design gray
shades ranging from 0 to 255 gray levels.

Figure 12. Measurement of luminance of the center lines.

Figure 13. Center lines measurement with varied focus.

To emulate potential human errors in setting up the HMD, a set of parameters (including
brightness, orientation, spatial adjustment, and contrast) were manipulated and the resulting
images captured. These images were used as a basis for creating new image files. These designed
images

9

Figure 14. Designed test pattern with focus on the center lines.

were used to test the software prototype. The experiments were carried out using similar methods.
For example, to measure the potential displacement of the test pattern, a camera was mounted
facing the HMD. The test pattern was projected onto a video monitor by means of a personal
computer (PC). Measurements were taken before and after the spatial adjustments. The maximum
adjustments in the upward, downward, left and right directions were 3.57, 2.98, 4.90 and 4.90
degrees, respectively, based on an FOV of 40 x 31 degrees (Harding et al., 1995).

Software prototype design

The software prototype was designed to capture, analyze, and interpret the image against test
pattern features such as the four center lines and number of gray shades. Accordingly, the
prototype design will require three modules--image acquisition, image analysis and interpretation--
as well as on-line user help. Figure 15 shows the modules involved in the prototype. Visual Basic
(VB) was used to develop the prototype because of its flexibility in linking and embedding with
other commercial software and because it was a powerful toolbox for rapidly prototyping a
complicated window. In the following sections, we describe the functionality of each module and
how the modules are integrated. Algorithms developed to interpret the image follow. Finally,
testing and validation of the code is addressed. The source code for the program can be found in
Appendix B.

Image capture module

The VB Object Linking and Embedding (OLE) capability allows integration of other programs.
In this case, the image capture graphics program served as an object which was linked into the VB
main program. The graphics program was launched by activating the linked object. Once the
object had been activated, the VB main program allowed the user to modify, save, or open
documents created by the graphic program in VB’s integrated design environment (IDE). After
the user was done with the image capture graphics program, control was released to the VB
environment. The graphics program itself contained three components: the driver used to activate

10

the image capture card and digitize the video signal into a graphics image format (e.g., bitmap or
jpeg); an image processing shell which allowed image manipulation (e.g., sharpening and
lightening); and an on-line user manual. Figure 16 shows the opening screen for the image capture
module. Figures 17 and 18 show image capture and processing subcomponents.

Figure 15. Opening screen of prototype software.

Figure 16. Image capture module.

 Figure 17. Image capture component. Figure 18. Image processing component.

11

Image analysis and interpretation module

The image analysis and interpretation module (1) detects the presence of key features such as
center lines within the test pattern, (2) compares selected features against the feature specification,
and (3) generates findings. VB components were created to provide these functions and to
interface with other modules. A subwindow titled “evaluation criteria” was created to analyze and
interpret the captured image from an HMD. A few created algorithms were coded in VB to
perform the analysis. Other subwindows, such as a directory box and file list boxes were created
to allow retrieval of image files for analysis. Finally, an additional subwindow was designed to
display the image currently being analyzed. This module also allows access to other modules via a
button control. Figure 19 shows the image analysis and interpretation module.

Figure 19. Image analysis and interpretation module.

Algorithm design

Algorithms were developed to detect various features within the test pattern as described earlier.
These are described below:

A. Identify the number of center lines.

Step 1. Apply binary image technique to the entire image.
Step 2. Draw multiple lines across X and/or Y axes.
Step 3. Identify mask with feature of B/W. . . W/B.
Step 4. Store the intersection points in an array with multiple dimensions.
Step 5. Construct regression lines based on the points within each dimension.
Step 6. Develop regression lines to compare the parallel property.
Step 7. Average the intersection points around the array to obtain the number of estimated lines.

Note 1: B = black pixel and W = white pixel.
Note 2: Use of linear regression analysis would make the linear mode robust and insensitive to
 noise presence.
B. Identify the center point.

12

Step 1. Construct a regression line based on all the intercepted points.
Step 2. Identify the midpoint of an array as a starting point with the feature of W/B/W.
Step 3. Examine neighboring pixels to see if a W/W/W mask exists.
Step 4. If a W/W/W mask exists, stop the procedure; else next step.
Step 5. Check the distance of neighboring pixels from the regression line using a 3 x 3 area.
Step 6. Select the point with the smallest distance from the regression line as the next point.
Step 7. Go to step 3.

C. Identify test pattern orientation and displacement.

Step 1. Compute a theoretical center as point A.
Step 2. Identify the actual center point (based on part B) as point B.
Step 3. Compute the distance between point A and B as d.
Step 4. If d is equal to 0; then the displacement is zero.
Step 5. Construct lines between a given point with points A and B.
Step 6. Compute the angle between lines as orientation angle

D. Identify the number of gray shades within a test pattern.

Step 1. Use the center point as a starting point.
Step 2. Pick five points across the center line that are within the boundary of gray shades.
Step 3. Compute the average gray level of the five points.
Step 4. Store it in one dimension of the array.
Step 5. If the boundary is not reached, move up or down a given distance, and go to Step 3; else
 next.
Step 6. Use of square root of two differences to determine the number of gray shades.

E. Identify boundary lines.

Step 1. Use the center point and boundary ratio to determine the region of the image boundary.
Step 2. Locate a starting point white pixel to use for back tracking the rest of the white pixels for
 each line segment.

F. Identify the focus setting.

Step 1. Use line scan technique to record the pixels along the center lines.
Step 2. Use the B/W/B mask to identify the separation of lines.
Step 3. Compute the ratio of bottom to mid-peak and peak to valley for all four lines.
Step 4. If the ratio is approximately one, we may conclude that the focus setting is good; or else
 check the focus setting

13

Other methods for center point detection exist. However, these were deemed less appropriate
for this application. For instance:

Alternate approach #1:
 b b b b
Step 1. Use of the mask of bwwwwwb
 b b b b

Note: If the orientation of the image is unknown, this method can be time consuming.

Alternate approach #2:

Step 1. Find the center point of each line.
Step 2. Use the averaging method to find the center of all the centers.

Note: This method involves more steps than the proposed one, because you must first find the
center of each line and there are four lines to be examined.

Alternate approach #3:

Step 1. Identify the boundary of the image.
Step 2. Use the center of gravity method to find the center of the image.

Figure 20(a-d) shows screens from the image analysis module. Figure 20a shows a binary
image of the test pattern after the binary image technique had been applied to the test pattern
captured from the HMD. Figure 20b shows the four center lines that were identified from the
binary image (Figure 20a). After the center lines had been identified, the image analysis module
identified the center point of the image. Figure 20c shows the coordinates (y only shown) of the
center point. The image analysis module then determined if the image was tilted or not. Figure
20d displays the tilt angle of the image. The analysis results are summarized and displayed in
Figure 21. A primary feature of the image analysis module is to identify features present in the
captured test pattern. The “Sober operator,” a well known edge detection technique, is used to
identify the boundaries of the features and, thereby, allow the analysis module to determine
whether or not the required features are present in the captured test pattern image. Figure 22
shows the same image before and after the Sober operator is applied.

Testing and validation

To verify the accuracy of the program, language debugging tools, and split-half and back
tracking strategies were imposed throughout the coding process. The program results were
compared with the simulation results. For example, to check the accuracy of the constructed
regression line, the same data points also were analyzed and compared with the results obtained
from a statistics package and hand calculation.

14

 (a) (b)

 (c) (d)
Figure 20. Tilted test pattern binary images from image analysis module.

Figure 21. Overall testing results of an HMD.

15

Figure 22. Tilted test pattern before (left) and after (right) Sober edge detection.

Hardware package design

A preliminary concept for the hardware package design consists of a display/output module,
power supply module, and image capture module. The display/output module should be designed
to display/generate inspection results of an HMD test pattern. The power supply module should be
designed to provide the voltages needed for the cameras and computer. The design also should
include a rechargeable battery pack which will allow the unit to operate in areas without an
external power supply. The power supply would be required to provide 12- and 9-volt outputs for
the cameras and computer, respectively. Finally, the image capture module must be designed to
hold an HMD and two cameras in fixed and contained positions, thereby preventing potential
noise that may affect the inspection accuracy. A proposed design is as follows: Two cameras
arranged vertically and facing the HMD. [Figure 23 shows one method investigated for aligning
the CCD image capture cameras and the HMD.] An inverted HMD fixture will be the most likely
one be used in the final concept. The fixture would be mounted with spring return locks on the
sides and bottom. The spring return locks will lock the HMD in a fixed position. These locks
would prevent the inspection process from continuing if the HMD is not positioned correctly.
Once the HMD is in the correct position, a proximity sensor will be used to trigger the image
system to start the image capture and interpretation processes. The cover of the image capture
module is in the shape of an inverted HMD. It is designed to cover the HMD tightly once it is in
the correct position, and to eliminate any optical noise from the surrounding environment. To
enhance the speed of image analysis, an Electronic Programmable Read Only Memory (EPROM)
chip, custom programmed to load the executable program for image analysis, could be used.
Figure 24 illustrates a preliminary computer aided design (CAD) concept of the hardware
prototype design.

Conclusions and future directions

In this project, a design framework for an image quality tester was proposed and evaluated.
Functionality and requirements of the tester were identified. Experiments were conducted to test

16

Figure 23. Investigation of CCD image capture arrangement.

Figure 24. CAD concept of prototype hardware design.

camera sensitivity and to probe aspects of an HMD test pattern using programmable micro-
positioning systems and a CCD camera. Test pattern specifications were developed based on
these observations. A strategy for image analysis and interpretation was formed, and algorithms
were designed to verify the test pattern of a given HMD against the specifications. A prototype
software package was written to inspect the test pattern and verify the effectiveness of the
algorithms. Finally, a design framework for a concept hardware package was proposed.

17

To build a brassboard version of a tester, future work must include: (1) fabrication of the
hardware design using inverse casting techniques, (2) integration of software and hardware
components for a prototype design, (3) field testing of the prototype, (4) incorporation of learning
algorithms to increase inspection accuracy, and (5) expansion of functionality from validation to
on-line real time interactive adjusting and self-tuning based on a given environmental scenario.
From the maintenance perspective, the work can be expanded to self-diagnosis and preventative
maintenance (such as life-time prediction).

18

References

Avionics Systems Group, Military Avionics Division. 1985. Integrated Helmet and Display
Sighting System - Study Guide. St. Louis Park, MN: Honeywell, Inc.

Harding, T.H., Beasley, H.H., Martin, J.S. and Rash, C.E. 1995. Physical Evaluation of the
Integrated Helmet and Display Sighting System Helmet Display Unit. Fort Rucker, AL: U.S.
Army Aeromedical Research Laboratory. USAARL Report No. 95-32.

19

Appendix A.

List of manufacturers.

Photo Research
3000 North Hollywood Way
Burbank, CA 91505

20

Appendix B

Software prototype program.

21

Form1 - 1

Private Sub Timer1_Timer()

Dim PauseTime, Start

 PauseTime = 2 ' Set duration.
 Start = Timer ' Set start time.
 Do While Timer < Start + PauseTime
 DoEvents ' Yield to other processes.
 Loop
 Unload Me
 Form2.Show

End Sub

22

Form2 - 1

Private Sub cmdQUIT_Click()

Unload Form2
End

End Sub

Private Sub Command2_Click() 'Image Analysis

 Unload Form2
 Form4.Show

End Sub

23

From3 - 1

Private Sub Continue_Click()

Unload Form3
Form4.Show

End Sub

Private Sub Quit_Click()

Unload Form3
Form2.Show

End Sub

24

Form4 - 1

Public Displacement, Angle As Double
Public CenterLineSlope As Double
Public CenterLineIntercept As Double
Public Center_Point_X, Center_Point_Y As Double

Const intUpperBoundX = 320 '320 total
Const intUpperBoundY = 244 '244 total
Const N = 4 '# of center line

Dim X, Y As Integer
Dim picObject0, picObject1 As Picture
Dim Coord_X(0 To 45, 0 To 10) As Integer
Dim Coord_Y(0 To 45, 0 To 10) As Integer
Dim pixels(0 To intUpperBoundX, 0 To intUpperBoundY) As Long
Dim ImagePixels(2, intUpperBoundX, intUpperBoundY) As Integer
Private Sub cmdSelect_Click()

Dim FileName, EdgeDetection As String
Dim bytRed, bytGreen, bytBlue, bytAverage As Integer

On Error GoTo FileError
If (Right$(Dir1.Path, 1) = "\") Then
 FileName = File1.Path & File1.FileName
 Else
 FileName = File1.Path & "\" & File1.FileName
End If

Open FileName For Input As #1
Set picObject0 = LoadPicture(FileName)
Set Picture0.Picture = picObject0
Close #1

For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1

 pixels(X, Y) = Picture0.Point(X, Y)
 bytRed = GetRed(pixels(X, Y))
 bytGreen = GetGreen(pixels(X, Y))
 bytBlue = GetBlue(pixels(X, Y))

 ImagePixels(0, X, Y) = bytRed
 ImagePixels(1, X, Y) = bytGreen
 ImagePixels(2, X, Y) = bytBlue

 'the file u have is in gray scale; therefore, u do not need to average
 Picture0.PSet (X, Y), RGB(bytRed, bytGreen, bytBlue)

Next Y
Next X

Exit Sub

FileError: MsgBox "File Error!"

End Sub

Private Sub cmdCenter_and_Boundary_Click()

Set Picture0.Picture = picObject0
For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1
 Picture0.PSet (X, Y), Picture0.Point(X, Y)

25

From4 - 2

 Next Y
Next X
Set picObject1 = Picture0.Picture
SavePicture picObject1, "TEST1.BMP"
LoadPicture ("TEST1.BMP")

End Sub

Private Sub cmdEdgeDetection_Click()

Dim RGBLong As Long
Dim G_X, G_Y, G_X_Y As Integer
Dim bRXY, bRXm1Y, byRXYm1, bRXm1Ym1 As Integer
Dim bRXp1Y, bRXYp1, bRXp1Yp1, bRXp1Ym1, bRXm1Yp1 As Integer
Dim bytRed, bytGreen, bytBlue As Integer

Set Picture0.Picture = picObject0

For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1

 If (X = 0 Or X = intUpperBoundX - 1 Or Y = 0 Or Y = intUpperBoundY - 1) Then

 bytRed = ImagePixels(0, X, Y)
 bytBlue = ImagePixels(1, X, Y)
 bytGreen = ImagePixels(2, X, Y)
 RGBLong = RGB(bytRed, bytGreen, bytBlue)

 Picture0.PSet (X, Y), RGBLong

 Else

 G_X = 0
 G_Y = 0
 G_X_Y = 0

 bRXY = ImagePixels(0, X, Y)
 bRXYp1 = ImagePixels(0, X, Y + 1)
 bRXm1Y = ImagePixels(0, X - 1, Y)
 bRXYm1 = ImagePixels(0, X, Y - 1)
 bRXm1Yp1 = ImagePixels(0, X - 1, Y + 1)
 bRXm1Ym1 = ImagePixels(0, X - 1, Y - 1)
 bRXp1Y = ImagePixels(0, X + 1, Y)
 bRXp1Ym1 = ImagePixels(0, X + 1, Y - 1)
 bRXp1Yp1 = ImagePixels(0, X + 1, Y + 1)

 G_X = bRXp1Ym1 + 2 * bRXp1Y + bRXp1Yp1 - bRXm1Ym1 - 2 * bRXm1Y - bRXm1Yp1
 G_Y = bRXm1Yp1 + 2 * bRXYp1 + bRXp1Yp1 - bRXm1Ym1 - 2 * bRXYm1 - bRXp1Ym1
 G_X_Y = Sqr((G_X * G_X) + (G_Y * G_Y))

 bytRed = G_X_Y

 bRXY = ImagePixels(1, X, Y)
 bRXYp1 = ImagePixels(1, X, Y + 1)
 bRXm1Y = ImagePixels(1, X - 1, Y)
 bRXYm1 = ImagePixels(1, X, Y - 1)
 bRXm1Yp1 = ImagePixels(1, X - 1, Y + 1)
 bRXm1Ym1 = ImagePixels(1, X - 1, Y - 1)
 bRXp1Y = ImagePixels(1, X + 1, Y)
 bRXp1Ym1 = ImagePixels(1, X + 1, Y - 1)
 bRXp1Yp1 = ImagePixels(1, X + 1, Y + 1)

26

Form4 - 3

 G_X = bRXp1Ym1 + 2 * bRXp1Y + bRXp1Yp1 - bRXm1Ym1 - 2 * bRXm1Y - bRXm1Yp1
 G_Y = bRXm1Yp1 + 2 * bRXYp1 + bRXp1Yp1 - bRXm1Ym1 - 2 * bRXYm1 - bRXp1Ym1
 G_X_Y = Sqr((G_X * G_X) + (G_Y * G_Y))

 bytBlue = G_X_Y

 bRXY = ImagePixels(2, X, Y)
 bRXYp1 = ImagePixels(2, X, Y + 1)
 bRXm1Y = ImagePixels(2, X - 1, Y)
 bRXYm1 = ImagePixels(2, X, Y - 1)
 bRXm1Yp1 = ImagePixels(2, X - 1, Y + 1)
 bRXm1Ym1 = ImagePixels(2, X - 1, Y - 1)
 bRXp1Y = ImagePixels(2, X + 1, Y)
 bRXp1Ym1 = ImagePixels(2, X + 1, Y - 1)
 bRXp1Yp1 = ImagePixels(2, X + 1, Y + 1)

 G_X = bRXp1Ym1 + 2 * bRXp1Y + bRXp1Yp1 - bRXm1Ym1 - 2 * bRXm1Y - bRXm1Yp1
 G_Y = bRXm1Yp1 + 2 * bRXYp1 + bRXp1Yp1 - bRXm1Ym1 - 2 * bRXYm1 - bRXp1Ym1
 G_X_Y = Sqr((G_X * G_X) + (G_Y * G_Y))

 bytGreen = G_X_Y

 Picture0.PSet (X, Y), RGB(bytRed, bytGreen, bytBlue)

 End If

 Next Y
Next X

End Sub
Private Sub cmdGray_Shade__Click()

Set Picture0.Picture = picObject0
For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1
 Picture0.PSet (X, Y), Picture0.Point(X, Y) - 5
 Next Y
Next X

End Sub
Private Sub cmdFoucs_Click()

Set Picture0.Picture = picObject0
For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1
 Picture0.PSet (X, Y), Picture0.Point(X, Y) - 10
 Next Y
Next X

End Sub
Private Sub cmdDis_and_Orientation_Click()
Const interval_range = 7

Dim WhitePixel, BlackPixel As Long
Dim linescan As Integer
Dim i, j, k, L, IntX, Temp_X, Temp_Y As Integer
Dim Flag, SumTline, Dummy As Integer
Dim interval As Integer
Dim ZeroO_X, ZeroO_Y As Double
Dim L1SlopeR, L2SlopeR, L3SlopeR, L4SlopeR, L1SlopeY, _
 L2SlopeY, L3SlopeY, L4SlopeY, AvgSlope As Double

27

Form4 - 4

Dim UpperBound, LowerBound As Double
Dim InterceptY As Integer
Dim Count_Points(0 To 403) As Integer
Dim TempInt, Choice As Integer
Dim Dum(0 To 15) As Double
Dim TempDouble As Double
Dim Tline(0 To 50) As Integer
Dim Oripixels(0 To intUpperBoundX, 0 To intUpperBoundY) As Long
Dim Displacement, Angle, Theta As Double
Dim CenterLineSlope As Double
Dim CenterLineIntercept As Double
Dim Center_Point_X, Center_Point_Y As Double
Dim TempText As String

Open "c:\windows\desktop\InspResults.txt" For Output As #1

For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1
 Oripixels(X, Y) = pixels(X, Y)
 Next Y
Next X

'Apply the binary image technique

For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1
 If (Oripixels(X, Y) < RGB(255, 255, 255)) Then
 Oripixels(X, Y) = 0
 Else
 Oripixels(X, Y) = RGB(255, 255, 255)
 End If
 Picture0.PSet (X, Y), Oripixels(X, Y)

 Next Y
Next X

'Find the number of center lines
'A line is BW...WB; if there is less than four BW...WBs; then Image is tilled
'white interval should be less than 7 for the central lines
'use Black/White/Black to find a line

linescan = 0
interval = 1

For Y = 50 To intUpperBoundY - 1
 Tline(linescan) = 0
 Flag = 0
 L = 0

 For X = 0 To intUpperBoundX - 1
 If ((Oripixels(X, Y) = RGB(0, 0, 0)) And _
 (Oripixels(X + 1, Y) = RGB(255, 255, 255))) Then

 For interval = 1 To interval_range - 1
 If (Oripixels(X + 1 + interval, Y) = RGB(0, 0, 0)) Then

 Tline(linescan) = Tline(linescan) + 1
 Flag = 1

 Coord_X(linescan, L) = X + 1 'of each line
 Coord_Y(linescan, L) = Y

28

Form4 - 5

 L = L + 1

 End If
 interval = interval_range 'stop the for loop
 Next interval
 End If
 Next X
 Y = Y + 10 ' 5 'to have 40 arbitary verticle lines
 If (Flag = 1) Then
 linescan = linescan + 1
 End If
Next Y

k = 0
SumTline = 0
For j = 0 To linescan - 1 'from prev. routine # of arb. ver. lines
 If (Tline(j) > 0) Then
 SumTline = SumTline + Tline(j)
 k = k + 1
 End If
Next j

If (3.5 <= (SumTline / k) <= 4.5) Then
 MsgBox ("Number of center lines is " & N)

 L1SlopeR = GetSlope(linescan, 0, 0)
 L1SlopeY = GetSlope(linescan, 0, 1)

 L2SlopeR = GetSlope(linescan, 1, 0)
 L2SlopeY = GetSlope(linescan, 1, 1)

 L3SlopeR = GetSlope(linescan, 2, 0)
 L3SlopeY = GetSlope(linescan, 2, 1)

 L4SlopeR = GetSlope(linescan, 3, 0)
 L4SlopeY = GetSlope(linescan, 3, 1)

 AvgSlope = (L1SlopeY + L2SlopeY + L3SlopeY + L4SlopeY) / 4
 LowerBound = 0.025 * AvgSlope
 UpperBound = 1.025 * AvgSlope

'Use the absolute value; therefore, it works on both -/+ values

 If ((Abs(LowerBound) <= Abs(L1SlopeY) <= Abs(UpperBound)) And _
 (Abs(LowerBound) <= Abs(L2SlopeY) <= Abs(UpperBound)) And _
 (Abs(LowerBound) <= Abs(L3SlopeY) <= Abs(UpperBound)) And _
 (Abs(LowerBound) <= Abs(L4SlopeY) <= Abs(UpperBound))) Then
 MsgBox ("Four lines are parallel !")
 Else: MsgBox ("Potential errors in finding parallel lines")
 End If

Else
 MsgBox ("Number of center lines is " & SumTline / k)
End If

'The following is to find the center point of the image
'Step 1: Find the black pixel
'Step 2: Calcuate the neighborhood pixels distance to the regression line
'Step 3: Locate the one that has the smallest distance
'Step 4: Check to see if the feature of w
' wwww
' W

29

Form4 - 6

' been meet
' if not; based on current X, Y; go to Step 1

BlackPixel = RGB(0, 0, 0)
WhitePixel = RGB(255, 255, 255)

CenterLineSlope = GetSlope(linescan, 0, 2)
CenterLineIntercept = GetSlope(linescan, 0, 3)

MsgBox ("C.L.Intercept = " & CenterLineIntercept)
MsgBox ("C.L.Slope = " & CenterLineSlope)

For Y = 20 To intUpperBoundY - 1
 X = (Y * CenterLineSlope) + CenterLineIntercept
 IntX = X
 If (Oripixels(IntX, Y) = BlackPixel) Then

 L = 0
 Temp_X = 0
 Temp_Y = 0
 For i = -1 To 1
 For j = -1 To 1
 If (Oripixels(IntX + i, Y + j) = WhitePixel) Then
 Temp_X = Temp_X + (IntX + i)
 Temp_Y = Temp_Y + (Y + j)
 L = L + 1
 End If
 If (L >= 3) Then 'Neighborhood pixels are White
 Center_Point_X = Temp_X / L
 Center_Point_Y = Temp_Y / L
 MsgBox ("Center X = " & Center_Point_X)
 Beep
 MsgBox ("Center Y = " & Center_Point_Y)
 i = 1
 j = 1
 Y = intUpperBoundY
 End If
 Next j
 Next i

 L = 0
 Dum(L) = 0
 For i = 0 To 1
 For j = 0 To 1
 If (i <> 0 Or j <> 0) Then
 Dum(L) = Measure_Distance(CenterLineIntercept, CenterLineSlope, X + i, Y + j)
 L = L + 1
 End If
 Next j
 Next i

 For k = 0 To L - 1
 If (Dum(k) < Dum(k + 1)) Then
 TempDouble = Dum(k)
 Dum(k) = Dum(k + 1)
 Dum(k + 1) = TempDouble
 End If
 Next k

 For i = 0 To 1
 For j = 0 To 1
 If ((i <> 0 Or j <> 0) And (Dum(L - 1) = Measure_Distance(CenterLineIntercept, CenterLineSlope, X + i, Y + j)))

30

_

Form4 - 7

 Then _

 X = X + i
 Y = Y + j - 1 'because Y auto. inc. by 1
 i = 1
 j = 1

 End If
 Next j
 Next i

 End If
 Picture0.PSet (IntX, Y), RGB(255, 255, 255)

Next Y

'The following section is to find the orientation and displacement
'Comparing the theoretical zero point and new zero point
'Calculate the displacement and titled angle

ZeroO_X = (intUpperBoundX - 1) / 2
ZeroO_Y = (intUpperBoundY - 1) / 2

If ((Center_Point_X - ZeroO_X = 0) And (Center_Point_Y - ZeroO_Y = 0)) Then

 Theta = 0
 Displacement = 0

 Else

 Displacement = Sqr((Center_Point_X - ZeroO_X) ^ 2 + (Center_Point_Y - ZeroO_Y) ^ 2)
 TempDouble = (Center_Point_Y - ZeroO_Y) / Displacement
 Theta = Atn(TempDouble / Sqr(-TempDouble * TempDouble + 1))
 Angle = 90 - ((Theta / 3.141592654) * 180)

End If

MsgBox ("Titled angle is (clockwise): " & Angle)
MsgBox ("Displacement is: " & Displacement)

For X = 0 To intUpperBoundX - 1
 For Y = 0 To intUpperBoundY - 1
 Picture0.PSet (X, Y), RGB(255, 255, 255)
 Next Y
Next X

For i = 0 To 6

 Picture0.CurrentX = 20
 Picture0.CurrentY = 20 + 15 * i
 Select Case i
 Case 0:
 Picture0.Print ("Number of center lines are " & N)
 TempText = "Number of center lines are: "
 Write #1, TempText, N

 Case 1:
 Picture0.Print ("C.L.Intercept = " & CenterLineIntercept)
 Write #1, "C.L.Intercept = ", CenterLineIntercept

31

 Case 2:
 Picture0.Print ("C.L.Slope = " & CenterLineSlope)

Form4 - 8

 Write #1, "C.L.Slope = ", CenterLineSlope

 Case 3:
 Picture0.Print ("Center X = " & Center_Point_X)
 Write #1, "Center X = ", Center_Point_X

 Case 4:
 Picture0.Print ("Center Y = " & Center_Point_Y)
 Write #1, "Center Y = ", Center_Point_Y

 Case 5:
 Picture0.Print ("Titled angle is (clockwise): " & Angle)
 Write #1, "Titled angle is (clockwise): ", Angle

 Case 6:
 Picture0.Print ("Displacement is: " & Displacement)
 Write #1, "Displacement is ", Displacement

 End Select
 Next i
 Close #1

End Sub

Private Sub cmdQUIT_Click()

 Unload Form4
 Exit Sub
 ' Form2.Show

End Sub
Private Sub cmdBack_Click()

 Unload Form4
 Form3.Show

End Sub
Private Sub Dir1_Change()
 File1.Path = Dir1.Path
End Sub
Private Sub Drive1_Change()
 Dir1.Path = Drive1.Drive
End Sub
Function GetRed(colorVal As Long) As Integer
 GetRed = colorVal Mod 256
End Function
Function GetGreen(colorVal As Long) As Integer
 GetGreen = ((colorVal And &HFF00FF00) / 256&)
End Function
Function GetBlue(colorVal As Long) As Integer
 GetBlue = (colorVal And &HFF0000) / (256& * 256&)
End Function
Function GetSlope(Points As Integer, LineN As Integer, Choice As Integer) As Double

 Dim SumXY, SumX, SumY As Double
 Dim SumYsq, SumXsq, FuncDumy As Double
 Dim A, Index, Position_X, Position_Y As Integer

 SumXY = 0

32

 SumX = 0
 SumY = 0
 SumXsq = 0

Form4 - 9

 SumYsq = 0
 Position_X = 0
 Position_Y = 0
 Index = 0
 FuncDumy = 0

 'Sometimes the image is trancated; u do not have
 'all the 18 points; we use the B to represent to count
 'all the points
 'Choice 0: Line correlation coefficient
 'Choice 1: Parallel line slope
 'Choice 2: Center line slope
 'Choice 3: Center line intercept

 If (Choice = 0 Or Choice = 1) Then
 For A = 0 To Points - 1
 Position_X = Coord_X(A, LineN)
 Position_Y = Coord_Y(A, LineN)

 If ((Position_X <> 0) And (Position_Y <> 0)) Then
 SumXY = SumXY + (Position_X * Position_Y)
 SumX = SumX + Position_X
 SumY = SumY + Position_Y
 SumYsq = SumYsq + Position_Y ^ 2
 SumXsq = SumXsq + Position_X ^ 2
 Index = Index + 1
 End If
 Next A

 End If

 If (Choice = 2 Or Choice = 3) Then
 For A = 0 To Points - 1
 For LineN = 0 To N - 1
 Position_X = Coord_X(A, LineN)
 Position_Y = Coord_Y(A, LineN)

 If ((Position_X <> 0) And (Position_Y <> 0)) Then
 SumXY = SumXY + (Position_X * Position_Y)
 SumX = SumX + Position_X
 SumY = SumY + Position_Y
 SumYsq = SumYsq + Position_Y ^ 2
 SumXsq = SumXsq + Position_X ^ 2
 Index = Index + 1

 End If
 Next LineN
 Next A
 End If

 If ((SumX = 0) Or (SumY = 0) Or (SumX * SumY = 0)) Then
 GetSlope = 0
 Else
 If (Choice = 1 Or Choice = 2) Then
 GetSlope = ((SumXY) - ((SumX * SumY) / Index)) / ((SumYsq) - ((SumY * SumY) / Index))
 End If

 If (Choice = 3) Then
 FuncDumy = ((SumXY) - ((SumX * SumY) / Index)) / ((SumYsq) - ((SumY * SumY) / Index))
 GetSlope = (SumX - (FuncDumy * SumY)) / Index
 End If

 If (Choice = 0) Then
 FuncDumy = Sqr((SumXsq - (SumX ^ 2 / Index)) * (SumYsq - (SumY ^ 2 / Index)))
 GetSlope = ((SumXY) - ((SumX * SumY) / Index)) / FuncDumy

33

 End If
 End If

End Function
Function dblSquare(SquareMe As Integer) As Double

Form4 - 10

 dblSquare = SquareMe ^ 2 '* SquareMe

End Function
Function Measure_Distance(c1 As Double, m1 As Double, Point2_X As Integer, Point2_Y As Integer) As Double

Dim Point1_X, Point1_Y As Long
Dim c2 As Long

c2 = Point2_X - ((-1 / m1) * Point2_Y)
Point1_X = (c2 * m1 - c1 * (-1 / m1)) / (m1 - (-1 / m1))
Point1_Y = (c2 - c1) / (m1 - (-1 / m1))
Measure_Distance = Sqr((Point2_X - Point1_X) ^ 2 + (Point2_Y - Point1_Y) ^ 2)

End Function

End Sub

34

Form5 - 1

Private Sub Back_Click()

Unload Form5
Form4.Show

End Sub

Private Sub Picture2_Click()

End Sub

Private Sub Quit_Click()

Unload Form5
Exit Sub

End Sub
Private Sub ShowRes_Click()

Dim NewLine As String

On Error GoTo FileError
Open "c:\windows\desktop\InspResults.txt" For Input As #1
Do Until EOF(1)
 Line Input #1, NewLine
 TEXT1.Text = TEXT1.Text + NewLine + vbCrLf
Loop

Exit Sub

FileError:
 MsgBox "File Error! "

End Sub

35

Form1 - 1

Private Sub Timer1_Timer()

Dim PauseTime, Start

 PauseTime = 2 ' Set duration.
 Start = Timer ' Set start time.
 Do While Timer < Start + PauseTime
 DoEvents ' Yield to other processes.
 Loop
 Unload Me
 Form2.Show

End Sub

36

Form1 - 1

VERSION 5.00
Begin VB.Form Form1
 Caption = "HMD TESTER"
 ClientHeight = 4140
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 7890
 LinkTopic = "Form1"
 ScaleHeight = 4140
 ScaleWidth = 7890
 StartUpPosition = 3 'Windows Default
 Begin VB.Frame Frame1
 Height = 4050
 Left = 0
 TabIndex = 0
 Top = 0
 Width = 7905
 Begin VB.Timer Timer1
 Interval = 1000
 Left = 6960
 Top = 3360
 End
 Begin VB.Label lblCompanyProduct
 AutoSize = -1 'True
 Caption = "US AARL"
 BeginProperty Font
 Name = "Arial"
 Size = 18
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 435
 Left = 3240
 TabIndex = 8
 Top = 600
 Width = 1590
 End
 Begin VB.Label lblLicenseTo
 Alignment = 1 'Right Justify
 Caption = "******"
 BeginProperty Font
 Name = "Arial"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 3960
 TabIndex = 7
 Top = 360
 Width = 3495
 End
 Begin VB.Label lblProductName
 AutoSize = -1 'True
 BackColor = &H80000018&
 Caption = "HMD TESTER"
 BeginProperty Font
 Name = "Arial"
 Size = 32.25

37

Form1 - 2

 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 765
 Left = 3240
 TabIndex = 6
 Top = 1140
 Width = 4245
 End
 Begin VB.Label lblPlatform
 Alignment = 1 'Right Justify
 AutoSize = -1 'True
 Caption = "Platform: PC"
 BeginProperty Font
 Name = "Arial"
 Size = 15.75
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 360
 Left = 4950
 TabIndex = 5
 Top = 2340
 Width = 1905
 End
 Begin VB.Label lblVersion
 Alignment = 1 'Right Justify
 AutoSize = -1 'True
 Caption = "Version: 1.0"
 BeginProperty Font
 Name = "Arial"
 Size = 12
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 285
 Left = 5490
 TabIndex = 4
 Top = 2700
 Width = 1365
 End
 Begin VB.Label lblWarning
 Caption = "Supported by US AARL and Army Summer Faculty Research Program"
 BeginProperty Font
 Name = "Arial"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 195
 Left = 150
 TabIndex = 3
 Top = 3660

38

Form1 - 3

 Width = 6855
 End
 Begin VB.Label lblCompany
 Caption = "August, 1999"
 BeginProperty Font
 Name = "Arial"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 4560
 TabIndex = 2
 Top = 3270
 Width = 2415
 End
 Begin VB.Label lblCopyright
 Caption = "Sheng-Jen (""Tony"") Hsieh, Ph.D."
 BeginProperty Font
 Name = "Arial"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 255
 Left = 4560
 TabIndex = 1
 Top = 3060
 Width = 2415
 End
 Begin VB.Image imgLogo
 Height = 3105
 Left = 240
 Picture = "820F1.frx":0000
 Stretch = -1 'True
 Top = 360
 Width = 2655
 End
 End
End

39

Form2 - 1

Private Sub cmdQUIT_Click()

Unload Form2
End

End Sub

Private Sub Command2_Click() 'Image Analysis

 Unload Form2
 Form4.Show

End Sub

40

Form2 - 1

VERSION 5.00
Begin VB.Form Form2
 Caption = "Main Menu"
 ClientHeight = 4185
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 6165
 LinkTopic = "Form2"
 ScaleHeight = 4185
 ScaleWidth = 6165
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton cmdQUIT
 Caption = "Quit"
 BeginProperty Font
 Name = "Comic Sans MS"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 375
 Left = 5520
 TabIndex = 4
 Top = 3720
 Width = 495
 End
 Begin VB.CommandButton Image_Capture
 Caption = "Image Capture"
 BeginProperty Font
 Name = "Comic Sans MS"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 375
 Left = 0
 TabIndex = 3
 Top = 3720
 Width = 1335
 End
 Begin VB.CommandButton Command2
 Caption = "Image Analysis"
 BeginProperty Font
 Name = "Comic Sans MS"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 375
 Left = 1440
 TabIndex = 2
 Top = 3720
 Width = 1335
 End

41

Form2 -2

 Begin VB.CommandButton Results
 Caption = "Results"
 BeginProperty Font

 Name = "Comic Sans MS"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 375
 Left = 2880
 TabIndex = 1
 Top = 3720
 Width = 1215
 End
 Begin VB.CommandButton Command4
 Caption = "Help"
 BeginProperty Font
 Name = "Comic Sans MS"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 375
 Left = 4200
 TabIndex = 0
 Top = 3720
 Width = 1215
 End
 Begin VB.Image Image1
 Height = 4140
 Left = 0
 Picture = "820F2.frx":0000
 Stretch = -1 'True
 Top = 0
 Width = 6240
 End
End

42

From3 - 1

Private Sub Continue_Click()

Unload Form3
Form4.Show

End Sub

Private Sub Quit_Click()

Unload Form3
Form2.Show

End Sub

43

Form3 - 1

VERSION 5.00
Begin VB.Form Form3
 AutoRedraw = -1 'True
 Caption = "Image Capture"
 ClientHeight = 3690
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 7605
 BeginProperty Font
 Name = "Comic Sans MS"
 Size = 8.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 LinkTopic = "Form3"
 Picture = "820F3.frx":0000
 ScaleHeight = 3690
 ScaleWidth = 7605
 StartUpPosition = 3 'Windows Default
 Begin VB.CommandButton Continue
 Caption = "Continue"
 Height = 375
 Left = 3600
 TabIndex = 8
 Top = 3240
 Width = 855
 End
 Begin VB.TextBox Help
 Alignment = 2 'Center
 BorderStyle = 0 'None
 DragMode = 1 'Automatic
 Height = 285
 Left = 6960
 TabIndex = 6
 Text = "Help"
 Top = 2880
 Width = 495
 End
 Begin VB.TextBox Text2
 Alignment = 2 'Center
 BorderStyle = 0 'None
 Height = 285
 Left = 5880
 TabIndex = 5
 Text = "User Manual"
 Top = 2880
 Width = 975
 End
 Begin VB.TextBox Capure
 Alignment = 2 'Center
 BorderStyle = 0 'None
 Height = 285
 Left = 4560
 TabIndex = 4
 Text = "View & Capture"
 Top = 2880
 Width = 1215
 End
 Begin VB.CommandButton Quit

44

Form3 - 2

 Caption = "Quit"
 Height = 375
 Left = 2400
 TabIndex = 0
 Top = 3240
 Width = 735
 End
 Begin VB.Label Label1
 BackColor = &H00FFFFFF&
 Caption = "Double click to activate"
 Height = 255
 Left = 5400
 TabIndex = 7
 Top = 2520
 Width = 1815
 End
 Begin VB.OLE OLE3
 BackColor = &H00C0C0C0&
 Class = "Package"
 DisplayType = 1 'Icon
 Height = 375
 Left = 6960
 OleObjectBlob = "820F3.frx":99C4
 SourceDoc = "C:\Program Files\MRT micro\MRT VideoPort Professional\User Manuals\Edoc16.hlp"
 TabIndex = 3
 Top = 3240
 Width = 615
 End
 Begin VB.OLE OLE2
 BackColor = &H00C0C0C0&
 DisplayType = 1 'Icon
 Height = 375
 Left = 5880
 OleObjectBlob = "820F3.frx":41FDC
 SourceDoc = "C:\WINDOWS\twain\Camdrv80\Camdrive.hlp"
 TabIndex = 2
 Top = 3240
 Width = 975
 End
 Begin VB.OLE OLE1
 BackColor = &H00C0C0C0&
 Class = "IMWizard"
 DisplayType = 1 'Icon
 Height = 375
 Left = 4560
 OleObjectBlob = "820F3.frx":435F4
 SourceDoc = "C:\Program Files\MRT micro\MRT VideoPort Professional\Image Wizard\Ripple.tif"
 TabIndex = 1
 Top = 3240
 Width = 1215
 End
 Begin VB.Image Image1
 Height = 3705
 Left = 240
 Picture = "820F3.frx":44C0C
 Top = 0
 Width = 8070
 End
End

